

Home

OptiDocs is the documentation for OptiFine.

OptiDocs is a community-made project designed to document all of OptiFine.

OptiDocs contains detailed tables, pictures, tutorials, syntax specifications, and more.
It is free (as in libre [https://en.wikipedia.org/wiki/Gratis_versus_libre]), open-source [https://gitlab.com/whoatemybutter/optifinedocs], and open to contributions! The documentation here is in the public domain and may be used without attribution.

OptiDocs is current and does not contain specific notes or explanations for older versions, either of the base game or of the mod.

To get started, check out the left sidebar for a list of topics covered and their articles.

[image: _images/logo.webp]

OptiFine is a Minecraft optimization mod.

Here are some of OptiFine's features:

	Performance improvements: optimizations, FPS improvements, and efficient culling

	Shaders: wavy water, godrays, shadows, and clouds

	Graphics: mipmaps, anistropic filtering, and anti-aliasing

	Customizability: toggleable features, custom animations, and particles

	Feature-rich: adds many exclusive resource pack features

	Support: a vast community with a long-standing history

[image: _images/footer.webp]

Contents

Information

	 Capes
	Styles

	Banner capes

	Anniversary capes

	Special capes

	Locking

	Technical details

	Unknown project capes

	 Custom Player Models
	List of exclusive CPMs

	Technical details

	 Debug Keys

	 Easter Eggs
	X-Clacks-Overhead

	sp614x's birthday

	Cosmetics

	 FAQ
	Do I need to configure anything to get results?

	Can I bundle OptiFine?

	Where is the output log?

	Why do I get a warning message when launching?

	I can't find OptiFine in my launcher

	Why isn't OptiFine open-source?

	What happens if development stops?

	Is there OptiFine for Bedrock?

	What does the FPS counter mean?

	How do I change my cape?

	After paying, how long until I see my cape?

	How do I know if my cape is on?

	I did not get a confirmation email, and I do not see the cape

	I got a confirmation email, but I do not see the cape

	I gave the wrong username when donating

	Can I temporarily deactivate my cape?

	Can I move my cape to another account?

	My cape is now missing. Can I recover it?

	I can't access the cape servers

	I can't use the Mojang pattern for my cape

	Why do I get the "Invalid cape design" error?

	Why are there no fully custom capes?

	My OptiFine cape not show on PvP clients

	I moved my cape, but I don't see it

	Do I have to update my cape if I change my username?

	Can I change my donator e-mail?

	 Installation
	 Pre-requirements

	 Downloading

	 Install With Vanilla Launcher

	 Install With NeoForge

	 Install With Forge

	 Install With MultiMC

	 JVM Arguments

	 Troubleshooting
	Downloading

	Installing

	Launching

	Using

	 Versioning

Features

	 Better Grass
	Properties

	Examples

	JSON schema

	 Better Snow
	Block list

	 Block Render Layers
	Properties

	Example

	JSON schema

	 Custom Entity Models
	 Models

	 Parts

	 Animation

	 Entity names

	 Limitations

	 Custom Item Textures
	Global properties

	Properties

	Type-specific properties

	Potions

	Examples

	JSON schema

	 Colormaps
	Formats

	Properties

	Applying a colormap

	Grass and foliage

	Swamp, mesa colors

	Fixing sugar cane in 1.7+

	Other colors

	Examples

	Custom biome palettes

	JSON schema

	 Connected Textures
	General properties

	Method properties

	JSON schema

	 Custom Animations
	Properties

	Example

	Frame order and timing

	JSON schema

	 Custom Colors
	Properties

	Aliases

	Miscellaneous colormaps

	 Custom GUIs
	General properties

	Specific properties

	JSON schema

	 Custom Lightmaps
	Vanilla lighting

	Other lightmaps

	Night vision

	 Custom Loading Screens
	Properties

	JSON schema

	 Custom Panoramas
	Alternative panorama folders

	Properties

	Overlay colors

	JSON schema

	 Custom Sky
	Properties

	Time format

	Blender model

	JSON schema

	 Dynamic Lights
	Properties

	JSON schema

	 Emissive Textures
	Properties

	Armor trims

	Translucency

	Limitations

	Tutorials

	JSON schema

	 HD Fonts
	Properties

	JSON schema

	 Lagometer

	 Natural Textures
	JSON schema

	 Random Entities
	Files

	Matching order

	Properties

	Examples

	JSON schema

	 Shaders
	Downloading

	Installing

	Configuring

	Internal shaders

	 Shaders - Development
	Color attachments

	Configurations

	Formats

	ID mapping

	Indexes

	Options screen

	Preprocessor directives

	Programs

	Textures

	Uniforms

	Usages

	Overview

	Dimension shaders

	Files

	Compute shaders

	Image access

	Attributes

	Block render layers

	 Syntax
	File name

	File structure

	Paths

	Biomes

	NBT

	Numbers, ranges

	Lists

	Colors

	Blocks, items

	Blending methods

	 Texture Properties
	Properties

	JSON schema

Documentation

	 About
	Is this official?

	Is this legitimate?

	When was this made?

	I found a bug!

	What's the license?

	 Changelog
	2024 March 13

	2024 January 30

	2023 November 19

	2023 September 24

	2023 September 13

	2023 August 15

	2023 August 14

	2023 August 6

	2023 August 4

	2023 July 2

	2023 June 26

	2023 June 10

	2023 June 6

	2023 April 12

	2023 February 9

	2023 February 5

	2022 December 8

	2022 August 27

	2022 July 21

	2022 April 6

	2021 December 11

	2021 November 20

	2021 November 2

	2021 October 31

	2021 September 20

	2021 August 30

	2021 August 29

	2021 August 22

	2021 August 17

	2021 July 14

	2021 July 7

	2021 July 3

	2021 July 2

	2021 June 13

	2021 June 12

	2021 May 31

	2021 May 27

	 Contributing
	Things to know

	Browsing the source

	Creating issues

	Contributing directly

	Style guide

	 Glossary

	Index

	 JSON Schemas
	List

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Capes

[image: _images/icon1.webp]

The default cape design.

Capes are a cosmetic given to OptiFine users who have donated [https://optifine.net/donate] and checked the option for it.

The cape can be edited by opening the options menu in Skin Customization ‣ OptiFine Cape ‣ Open Cape Editor.

Styles

Capes can be customized and their style can be changed one of two styles:

Cape styles

	Name

	Design

	Options

	Standard

	[image: _images/standard.webp]

	None

	White

	[image: _images/white.webp]

	None

	Gray

	[image: _images/gray.webp]

	None

	Black

	[image: _images/black.webp]

	None

	Red

	[image: _images/red.webp]

	None

	Green

	[image: _images/green.webp]

	None

	Blue

	[image: _images/blue.webp]

	None

	Yellow

	[image: _images/yellow.webp]

	None

	Purple

	[image: _images/purple.webp]

	None

	Cyan

	[image: _images/cyan.webp]

	None

	Custom

	[image: _images/custom.webp]

	Top, Bottom, Text, Shadow

	Banner

	[image: _images/banner.webp]

	Top, Bottom, Shadow

Banner capes

Banners can be used as designs for OptiFine capes.

To design a banner, go to https://livzmc.net/banner/.

[image: _images/livzmc.webp]

The LivzMC cape/banner editor.

Banner designs have some restrictions and limitations:

	Banners cannot have over 8 layers, not including the base color.

	Banners cannot contain the "Thing" pattern [https://minecraft.wiki/w/Banner_Pattern] (which resembles the Mojang logo).

	Banners with offensive patterns may be manually removed at any time.

A collection of the most popular banner cape designs is available at https://optifine.net/banners.

Anniversary capes

Anniversary capes are cape styles that are only usable at certain times and dates.

10th anniversary

Most notably, the "10" cape replaced the Classic design during OptiFine's 10th anniversary.

	Texture file

	Texture resolution

	Dates applied (YYYY/MM/DD)

	[image: _images/original.webp]

	46px by 22px

	2021/04/08 - 2021/04/15

April 8th, 2021, marked OptiFine's 10th birthday.
To celebrate, all classic "OF" capes were changed to a "10" design.

Colors were the same as the normal classic capes.

[image: _images/player.webp]

How the "10" cape looks on a player.

Cape styles

	Name

	Design

	Standard

	[image: _images/original.webp]

	White

	[image: _images/white1.webp]

	Gray

	[image: _images/gray1.webp]

	Black

	[image: _images/black1.webp]

	Red

	[image: _images/red1.webp]

	Green

	[image: _images/green1.webp]

	Blue

	[image: _images/blue1.webp]

	Yellow

	[image: _images/yellow1.webp]

	Purple

	[image: _images/purple1.webp]

	Cyan

	[image: _images/cyan1.webp]

Special capes

Some players have "special" capes, given by sp614x.
These players are often long-time contributors or supporters of OptiFine.

These capes are not purchaseable, and are not given to regular donators.

As of August 2022, only 1 player has had their cape revoked.

Note

Cape names with an asterisk (*) are not official and are given only for categorization.
A name with (old) means that player no longer wears that cape currently.

List of special capes

	Name

	Design

	Owner(s)

	Cape purpose

	Texture author

	HD Grey 1*

	
[image: _images/hdgrey1.webp]

(source [https://mcskinhistory.com/cape/652456])

	EskiMojo14 [https://mcskinhistory.com/player/02d0b97bb79f4056bb4342f7de3fe88d] (old)

	For testing HD capes.

	EskiMojo14

	HD Grey 2*

	
[image: _images/hdgrey2.webp]

(source [https://mcskinhistory.com/cape/4812372])

	EskiMojo14 [https://mcskinhistory.com/player/02d0b97bb79f4056bb4342f7de3fe88d] (old)

	
	Modified version of HD Grey 1.

	HD Grey 3*

	
[image: _images/hdgrey3.webp]

(source [https://mcskinhistory.com/cape/6398339])

	EskiMojo14 [https://mcskinhistory.com/player/02d0b97bb79f4056bb4342f7de3fe88d]

	
	Modified version of HD Grey 2.

	Orange Heart*

	
[image: _images/orangeheart.webp]

(source [https://mcskinhistory.com/cape/4812372])

	FakeRetroBot [https://mcskinhistory.com/player/12fb8bfb99274e099fd9e32e5e44f5b3] (old), trollim [https://mcskinhistory.com/player/d398fb2e4fbf46e798ee51ea4ebc7cf2]

	For moderating the OptiFine Discord. Has since been revoked for being sold.

	Kirbyrocket

	Graph 1*

	
[image: _images/graph1.webp]

(source [https://mcskinhistory.com/cape/4308168])

	filefolder3 [https://mcskinhistory.com/player/aaf11ef0e29e4ecf950bb078083f56b8] (old)

	For compiling graphs and statistics about OptiFine releases.

	jckt

	Graph 2*

	
[image: _images/graph2.webp]

(source [https://mcskinhistory.com/cape/5503524])

	filefolder3 [https://mcskinhistory.com/player/aaf11ef0e29e4ecf950bb078083f56b8]

	
	Modified version of Graph 1.

	Code 1*

	
[image: _images/code1.webp]

(source [https://mcskinhistory.com/cape/4301576])

	jckt [https://mcskinhistory.com/player/891d59a8e0184030944b3345342a0189] (old)

	For moderating & managing the OptiFine Discord. Also for creating the OptiFine Discord bot.

	jckt

	Code 2*

	
[image: _images/code2.webp]

(source [https://mcskinhistory.com/cape/5522292])

	jckt [https://mcskinhistory.com/player/891d59a8e0184030944b3345342a0189]

	
	Modified version of Code 1.

	Snow*

	
[image: _images/snow.webp]

(source [https://mcskinhistory.com/cape/6169863])

	Jiingy [https://mcskinhistory.com/player/4264384088824a0f8d2ef7cf48e9c347]

	For moderating & managing the OptiFine Discord.

	Jiingy

	Postmaster 1

	
[image: _images/postmaster1.webp]

(source [https://mcskinhistory.com/cape/6171052])

	ZenW [https://mcskinhistory.com/player/10710270427749379a89bf317dd15f4d]

	For working on support e-mail.

	Jiingy

	Postmaster 2

	
[image: _images/postmaster2.webp]

(source [https://mcskinhistory.com/cape/6169825])

	KaiAF [https://mcskinhistory.com/player/a6eb249173654649a7952f032c9919f0] (old), IrisJS [https://mcskinhistory.com/player/1f08d3f357654fdbb6acaf4be2ea241c] (old), Fluffion [https://mcskinhistory.com/player/3ae8069572004bcc97ff453e1494c81d] (old), Jiingy [https://mcskinhistory.com/player/4264384088824a0f8d2ef7cf48e9c347]

	
	Modified version of Postmaster 1

	Postmaster 3

	
[image: _images/postmaster3.webp]

(source [https://mcskinhistory.com/cape/9796133])

	IrisJS [https://mcskinhistory.com/player/1f08d3f357654fdbb6acaf4be2ea241c], Fluffion [https://mcskinhistory.com/player/3ae8069572004bcc97ff453e1494c81d]

	
	Modified version of Postmaster 2

	Rainbow*

	
[image: _images/rainbow.webp]

(source [https://mcskinhistory.com/cape/6965598])

	KaiAF [https://mcskinhistory.com/player/a6eb249173654649a7952f032c9919f0] (old)

	
	

	Transgender*

	
[image: _images/transgender.webp]

(source [https://mcskinhistory.com/cape/6170002])

	KyriaBirb [https://mcskinhistory.com/player/2a7f7951369449f597e1417365177ce2]

	For moderation of OptiFine Discord.

	ZenithKnight

	Lego*

	
[image: _images/lego.webp]

(source [https://mcskinhistory.com/cape/8115780])

	MrCheeze445 [https://mcskinhistory.com/player/25b54bf7b2504d938988a73e9610a1d6]

	For moderating & managing the OptiFine Discord.

	Jiingy

	HD Red*

	
[image: _images/hdred.webp]

(source [https://mcskinhistory.com/cape/4744351])

	therealokin [https://mcskinhistory.com/player/fdce1893fb694db3a7f4adc3891779b4]

	
	Modified version of HD Grey 1, modified by sp614x

	Lion*

	
[image: _images/lion.webp]

(source [https://mcskinhistory.com/cape/140513])

	sp614x [https://mcskinhistory.com/player/07a4bbac8d564cee8e063e44ccc31fc3]

	Owned by the developer of OptiFine.

	sp614x

Locking

Capes can be "locked", so they can only be moved to a different username after logging in through the OptiFine website.
Once locked, they cannot be moved from the in-game Cape Editor. This is to prevent stealing capes when a Minecraft account is compromised.

[image: _images/locked.webp]

In the in-game editor, locked capes cannot be moved through the Minecraft account.

Technical details

The OptiFine client fetches capes for donators by querying the URL http://s.optifine.net/capes/<NAME>.png.

The native size of Minecraft's capes is 64px x 32px.
The OptiFine cape server generally returns capes that are 46px x 22px, with the exception of specialty capes granted to specific users.

On load, a canvas is initialized with a size of 64px x 32px.
If the supplied cape image is larger in width or height, it doubles the dimensions of the canvas repeatedly until it is large enough to fit the original image.
The supplied cape image is then placed onto this larger canvas, ensuring that the resulting image inherits the proper 2:1 aspect ratio.

This has the added benefit of compatibility with the 44x34 legacy capes that did not include the elytra section.

[image: _images/labeled.webp]

A labeled template of the cape UV map.

Unknown project capes

Warning

This information is not official and was gathered [https://gitlab.com/whoatemybutter/optifinedocs/-/issues/5] by ZenithKnight.

Two prototypes for new cape textures were presented by sp614x as part of an unknown project, but these were scrapped.

	
[image: _images/secret1.webp]

The Standard cape design.

	
[image: _images/secret2.webp]

A black and white variant.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Player Models

[image: _images/icon4.webp]

sp614x with a hat, available only to him.

Custom Player Models (CPM; sometimes called Special Cosmetics) is a feature that can change or add to the player model.

CPMs are like Capes, in that they are loaded on join and can be associated with a specific player.

[image: _images/cape_change.webp]

Available CPMs can be chosen under the Cape Change menu.

CPMs cannot be bought and like Special capes, they are normally not available to normal donators.

List of exclusive CPMs

MrCheeze

This cosmetic is titled mrcheeze. This is the username of an OptiFine Discord moderator.
It is at http://s.optifine.net/items/mrcheeze/model.cfg.

It resembles the rings at the top of Lego blocks,
as MrCheeze's cape is a reference to Legos, as well as his skin and profile.

 Debug Keys

 Debug Keys

Debug Keys are a feature of Vanilla Minecraft [https://minecraft.wiki/w/Debug_screen#More_debug-keys] that perform various debugging functions
when a specific key combination is pressed, usually involving the F3 button.

In addition to the Vanilla set of debug keys, OptiFine adds some of its own.

	Keys

	Result

	F3+V

	Load all visible chunks

	F3+O

	
	Open shader options
	
New in version M5.

	F3+R

	Reload shaders

Requires system property chunk.debug.keys

	Keys

	Result

	F3+E

	Show chunk path

	F3+L

	Smart cull

	F3+U

	Capture frustum

	Alt+F3+U

	Capture shadow frustum

	Shift+F3+U

	Release frustum

	F3+V

	Chunk visibility

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Easter Eggs

 Easter Eggs

[image: _images/icon13.webp]

Steve with a witch hat 🎃

There are easter eggs on both the OptiFine website and in the OptiFine client.
Some are only visible at certain dates, while others are still visible.

X-Clacks-Overhead

The OptiFine website [https://optifine.net] returns standard HTTP headers [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers].

In addition to the normal headers, the website also returns: x-clacks-overhead: GNU Terry Pratchett.
X-Clacks-Overhead is an unofficial HTTP header to memorialize Terry Pratchett [https://en.wikipedia.org/wiki/Terry_Pratchett#Death].

[image: _images/xclacks.webp]

The header, shown in Firefox.

sp614x's birthday

On the main menu, the splash message will say "Happy birthday, sp614x!" if the current computer date is August 14.

[image: _images/birthday.webp]

Cosmetics

Custom Player Models

Important

Please see Custom Player Models for more detail.

Custom Player Models is a feature that can change or add to the player model.

CPMs are like Capes, in that they are loaded on join and can be associated with a specific player.

[image: _images/cape_change.webp]

Available CPMs can be chosen under the Cape Change menu.

Santa Hat

	Texture file

	Texture resolution

	Model file

	Dates applied (YYYY/MM/DD)

	Unknown

	96 x 26

	https://optifine.net/items/hat_santa/model.cfg

	2020/12/25 - 2020/12/31

On December 25th, 2020, a Santa hat was added to all donators' heads. It was available until the end of year.

The same name (hat_santa) was reused for the Witch Hat, but the model and texture are different.

[image: _images/hatsanta.webp]

How the santa hat looks on a player

Witch Hat

	Texture file

	Texture resolution

	Model file

	Dates applied (YYYY/MM/DD)

	Notes

	[image: _images/hatwitch_file.webp]

	96px x 26px

	https://optifine.net/items/hat_santa/model.cfg

	
2021/10/30 - 2021/11/07

2023/10/30 - 2023/11/08

	

	[image: _images/hatwitch_file_old.webp]

	64px x 64px

	https://optifine.net/items/hat_witch/model.cfg

	
	Actual witch's hat, unused.

[image: _images/icon13.webp]

How the hat looks on a player.

The witch hat is a gray hat applied to all donators automatically.

Its name is actually reused from hat_santa (Santa Hat).
The original Witch's Hat has an unknown use, but it is applied to sp614x [https://optifine.net/items/hat_witch/users/sp614x.png].

It was first applied on October 30, 2021, and lasted until November 7, 2021; ~1 week.

Capes

Some special capes or event-related capes may be given to specific people or at specific times.

"10" Cape

See Anniversary capes.

Secret project capes

See Unknown project capes.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 FAQ

 FAQ

This document is a collection of the most frequently asked questions by users and their answers.

Do I need to configure anything to get results?

No. OptiFine's default options are sufficient for most use cases.
You can configure different options and find the trade-off between quality and performance that works best for you.

Can I bundle OptiFine?

No, unless you have explicit written permission from sp614x.

Where is the output log?

[image: _images/output_log.webp]

Depending on your launcher and operating system, the location of the output log file will vary.

If you are using the default Minecraft launcher, go to the General tab and tick the Open the output log when Minecraft: Java Edition starts button.

For more specific and in-depth instructions, see this page [https://help.ggservers.com/en-us/article/where-to-find-client-side-logs-7upje9/] (not associated with OptiDocs; third-party).

Why do I get a warning message when launching?

[image: _images/mod_warning.webp]

This warning can be safely ignored.
It shows when launching any modded instance of the game. It does not mean your installation is malicious, corrupt, or otherwise wrong.

I can't find OptiFine in my launcher

[image: _images/modded_ticked.webp]

A red arrow points to the "Modded" checkbox.

Mojang updated the Minecraft launcher and added a toggle to show or hide modded versions of the game.
Go to the "Installations" tab and make sure the Modded box is checked.

Why isn't OptiFine open-source?

In summary, legal and technical complexities prevent OptiFine from becoming open-source.

The core of OptiFine involves extensive reorganizations of Minecraft's rendering code, making it impractical to publish the full source code due to potential violations of Minecraft's EULA.
While it is technically possible to extract changes as non-violating patches, this poses challenges.
OptiFine relies on a custom version of Mod Coder Pack (MCP), and the non-standard MCP scripts cannot be distributed due to licensing restrictions.
Even if patches were released, collaboration would be restricted, undermining the purpose of going open-source.
Additionally, changing the development process to accommodate patches would be a non-trivial task.

What happens if development stops?

OptiFine will not die.

Java programs are not difficult to decompile.

In the event that sp614x, the developer, is no longer working,
virtually anyone with the right knowledge could decompile OptiFine in its entirety,
compare it to decompiled vanilla Minecraft code, and extract the patches.

Alternatively, if sp614x ever decides to quit, he is willing to publish OptiFine's patches to GitHub.
There are no plans to stop OptiFine's development.

Either way, OptiFine can live again.

Is there OptiFine for Bedrock?

Danger

Anything claiming to be OptiFine for Bedrock is completely unofficial and most likely a scam or malware.

No.

The Bedrock Edition of Minecraft is not at all supported by OptiFine.
It uses an entirely different engine and bears little resemblance to Java Edition.

What does the FPS counter mean?

Average FPS/minimum FPS.

The minimum is the lowest FPS recorded recently.

How do I change my cape?

You can login to the cape change page and select a new design.
The cape change page has a timeout of 2 minutes, and the cape has to be changed during this time.

After paying, how long until I see my cape?

The cape is activated automatically when the donation payment is complete.
Please note that some payment types (bank transfer, eCheck, etc.) may take several days to complete.
A notification email is sent to the donation email address when the cape is activated.

How do I know if my cape is on?

You can login to the cape change page. It will show the current cape design or a notification if the cape is not active.
The cape change page can automatically correct upper- and lower-case errors in the username.

I did not get a confirmation email, and I do not see the cape

Most probably, your donation was received without a username. You can login on the donator login page and assign a username for the cape.

I got a confirmation email, but I do not see the cape

Please ensure:

	The username is correctly spelled; upper- and lower-case matters.

	OptiFine is correctly installed (installation instructions).

	The option Video Settings ‣ Details ‣ Show Capes is ON.

	The option Skin Customization ‣ Cape is ON.

	No firewall or router is blocking OptiFine from accessing the OptiFine server where the cape is located.

	The cape is visible in single-player worlds. Some servers may modify the player's identity and thus prevent correct cape fetching.

I gave the wrong username when donating

If the username capitalization is not correct, then login on the cape change page, and the capitalization should be automatically fixed.

If the username is wholly incorrect, you can login on the donator login page, where you can assign a new username.

Can I temporarily deactivate my cape?

Yes.

You can deactivate and reactivate the cape on the cape change page with its checkbox.

Can I move my cape to another account?

Yes.

You can move the cape to another username on the cape change page.
After the cape is moved to a new username, it can only be modified from the new account!

If you move the cape to the wrong username, you can recover it on the donator login page.

My cape is now missing. Can I recover it?

Yes.

The cape was most probably moved by someone who knows your Minecraft login credentials.
You can recover the cape on the donator login page, where you can assign a new username for the cape.

You should change your login and secure your account to avoid the cape being moved again.

I can't access the cape servers

There are many reasons why you can't access the cape server (s.optifine.net):

	An antivirus is blocking the cape servers.

	Your ISP is blocking the cape servers.

	You have an application that is intentionally blocking the cape servers (such as Mantle).

In some cases, you may have to manually change your network settings. Here are the instructions:

	Open Notepad with Administrator. Search "Notepad" in your Windows Search Bar, right-click on it, and press Run as Administrator; accept the prompt.

	Press File ‣ Open.

	In the bottom right corner of the file window, change Text Documents (.txt) to All Files (.*).

	Navigate to C:\Windows\System32\drivers\etc.

	Open the hosts file.

	Delete the entire line that contains s.optifine.net or anything that contains mojang.

	Press Control+S to save.

	Close Notepad and restart your computer.

 Installation

 Installation

This page outlines the steps to install OptiFine for any version on any operating system.

	 Pre-requirements
	Java runtime

	Jarfix

	 Downloading

	 Install With Vanilla Launcher

	 Install With NeoForge

	 Install With Forge

	 Install With MultiMC

If, after any of these steps, you run into a problem, see Troubleshooting.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Pre-requirements

 Pre-requirements

Before installing OptiFine, you may need to install some things first to ensure the installer runs properly.

Java runtime

You may need to install a Java runtime (JRE) above version 8.
It is not recommended to use Oracle's Java. Instead, use Adoptium's (formerly AdoptOpenJDK) Java runtime.

You can choose to install any JRE; all work with the OptiFine installer.

 Downloading

 Downloading

To download OptiFine, first determine what version you will want to download OptiFine for.

Visit https://optifine.net/downloads, and find the heading that has your version.

Note

The latest minecraft version will always be displayed.
For older versions, click "Show all versions" at the bottom of the page.

[image: _images/of_downloads.webp]
Only download the most recent OptiFine version for your Minecraft version.
Click the large blue "Download" button, or the "(mirror)" link.

If you want an older OptiFine version, click the "+ More" link under the latest OptiFine version for that Minecraft version.
If you want a preview version of OptiFine, click the "+ Preview versions" link.

Important

If you are intending to use OptiFine with Forge, ensure that OptiFine version is compatible with your Forge version.

[image: _images/of_downloads_forge.webp]

Ensure this version is at least your Forge version!

You should now be downloading a .jar file.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Install With Vanilla Launcher

 Install With Vanilla Launcher

[image: _images/vanilla1.webp]

Important

To install OptiFine for a version, that same Vanilla version must be installed and ran beforehand.
If the version is not installed, or if it has not been played before, OptiFine will not install.

	Follow the instructions at Downloading.

	Run the downloaded .jar file.

	Follow the instructions and click "Install".

	Open the Minecraft launcher and select the OptiFine profile, and click "Play".

[image: _images/installer.webp]

The OptiFine installer

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Install With NeoForge

 Install With NeoForge

OptiFine is not yet available for NeoForge [https://neoforged.net/].
See issue GH-7626 [https://github.com/sp614x/optifine/issues/7626].

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Install With Forge

 Install With Forge

Note

This tutorial does not explain how to install Forge.

	Download and install Minecraft Forge [https://files.minecraftforge.net/net/minecraftforge/forge/] for the version you want

	Follow the instructions at Downloading.

	Open your Downloads folder in a file manager.

	From here on, process depends on your OS:

Note

These steps are for the Vanilla Launcher. For MultiMC, find the mods folder for your specific Forge instance.

 Install With MultiMC

 Install With MultiMC

Note

This applies to derivatives of MultiMC, like PolyMC or Prism.

Read https://github.com/MultiMC/Launcher/wiki/MultiMC-and-OptiFine#as-a-json-patch.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 JVM Arguments

 JVM Arguments

OptiFine supports running the game with arguments, some of which are not available in the options menu.

The system properties have to be added in the field "JVM Arguments" in the launcher profile. All arguments must be prefixed with -D.

[image: _images/launcher_field.webp]

The profile's "edit" screen, with the JVM ARGUMENTS field selected.

[image: _images/launcher_installations.webp]

A list of the installations, with the "edit" drop-down option hovered.

	Argument

	Values

	Meaning

	log.detail

	Boolean

	Enables extended logging.

	saveTextureMap

	Boolean

	Save the final texture map/atlas in the folder debug/.

	shaders.debug.save

	Boolean

	Save the final shader sources in the folder shaderpacks/debug/.

	animate.model.living

	Boolean

	
Automatically animate all mob models.

Useful for testing Custom Entity Models.

	player.models.local

	Boolean

	Load the player models from the folder playermodels/.

	frame.time

	Boolean

	
	Show frame time in milliseconds instead of FPS.
	
New in version G6.

	gl.debug.groups

	Boolean

	Enable OpenGL debug groups.

	gl.ignore.errors

	List of integers

	Ignore OpenGL errors [https://www.khronos.org/opengl/wiki/OpenGL_Error#Meaning_of_errors] based on the comma seperated list of error IDs.

	cem.debug.models

	Boolean

	
CEM debug models.

Automatically generate CEM models for all supported entities using different colors for each model part

The part names and colors are written in the log.

	chunk.debug.keys

	Boolean

	
	Enables chunk debug keys, see Debug Keys.
	
New in version H3.

For example, to enable extended logging, add -Dlog.detail=true to the JVM arguments.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Troubleshooting

 Troubleshooting

You may run into a problem when using OptiFine.
Below are the most common problems and solutions.
This is a non-exhaustive list; it does not contain every conceivable issue.

To get general support after confirming your solution is not here, join the Discord [https://discord.gg/3mMpcwW].

Downloading

Did not get a .JAR file

Danger

If you did not get a .JAR file, do not run it.

This occurs because you did not click the correct link when following the instructions on Downloading.
Ensure that you skip ads, or click the "(mirror)" link.

Installing

FileNotFoundException (Access Denied)

Go to the file location C:\Users\<your username here>\AppData\Roaming\.minecraft\libraries\optifine\OptiFine and delete the folder corresponding to the OptiFine version you are trying to install.

There are errors in the following switches

[image: _images/switches.webp]
This occurs because you did not follow the instructions in Pre-requirements.
Scroll to the Jarfix section and follow the directions.

Cannot find Minecraft version

[image: _images/version.webp]
This occurs because you did not follow the instructions in Install With Vanilla Launcher.
In the Vanilla Launcher, create a new profile (installation) with the requested Vanilla version.
Run it, and then close it.
Re-run OptiFine.

ZipException: error in opening zip file

[image: _images/zip.webp]
Copy the below code and paste it into a file ending in .bat.
Run it.

<# :

@echo off
echo Select the OptiFine.jar file to install
setlocal

for /f "delims=" %%I in ('powershell -noprofile "iex (${%~f0} | out-string)"') do (
java -jar %%~I
)
goto :EOF

: #>

Add-Type -AssemblyName System.Windows.Forms
$f = new-object Windows.Forms.OpenFileDialog
$f.InitialDirectory = pwd
$f.Filter = "JAR File (*.jar)|*.jar"
$f.ShowHelp = $true
$f.Multiselect = $true
[void]$f.ShowDialog()
if ($f.Multiselect) { $f.FileNames } else { $f.FileName }

Or, download the script here.

Could not find the main class

[image: _images/mainclass.webp]
You did not follow the instructions in Pre-requirements.
You need to install a Java runtime.

Launching

modName:tomatoGuy

[image: _images/tomatoguy.webp]
This occurs because you have an old version of Complementary shaders. Either update it [https://www.curseforge.com/minecraft/customization/complementary-shaders] or remove the shader pack.

Could not create the Java Virtual Machine

[image: _images/vm.webp]
This occurs because you did not follow the instructions in Pre-requirements.
You need to install a Java runtime, as well as Jarfix.

Using

Purple and black checkerboard textures

[image: _images/missing.webp]

The texture shown.

This happens because a required texture did not load. Normally, two things cause this:

	Invalid path (check File name).

	Missing file

Check your latest.log for more specifics on which textures are failing to load and why.

Ensure all of your .properties files point to valid texture paths.

Warped shaders

[image: _images/badshaders.webp]

Half of all textures appear warped.

This occurs because of a known bug. Enabling and disabling shaders with Forge requires a restart.

If running on Forge, do not swap shaders while in a world.

Same FPS

There are many reasons why, in some cases, the FPS with OptiFine may be the same or lower than Vanilla:

	Higher-quality settings are enabled.

	FPS might be limited by the FPS slider in Options.

	An applied resource pack may be using OptiFine-specific features intensely.

	There may be a mod conflict if other mods are installed alongside OptiFine.

Not using GPU

Note

These instructions only work for Windows.

	Open the Settings app.

	Navigate to System ‣ Display, and scroll down until you see Graphics Settings.

	
	Select Browse, then locate and add javaw.exe.
	
	The location of this file will vary, but you can usually find it at C:\Program Files (x86)\Minecraft Launcher\runtime\jre-x64\bin.

	Select Java(TM) Platform SE Binary, and then select Options.

	Set the graphics preference to High Performance, and then save.

 Versioning

 Versioning

[image: _images/icon23.webp]

E3, D8, D7, B3, B2, B1

OptiFine's versioning scheme follows most of Semantic Versioning [https://semver.org/].

	Letter: major version (A-Z)

	Number: minor version (1-9)

	preX: preview X (>=1)

Feature sets and Minecraft version changes warrant a major version increment.

Bugfixes and small changes warrant a minor version increment.

Preview versions can increment arbitrarily in order, and their feature set is mutable.

Minecraft versions are generally independent of the major version and are included in the version identifier because multiple versions of the same major version may be ported to more than 1 Minecraft version.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Better Grass

 Better Grass

[image: _images/grass.webp]

Grass on grass.

File location

/assets/minecraft/optifine/bettergrass.properties

Better Grass shows the side grass texture on grass blocks that are near other grass blocks.

When a Grass Block at the bottom is directly adjacent (north, east, south, or west)
to a Grass Block above, the side texture of the top block will be replaced with the top-face Grass Block texture.

[image: _images/selection.webp]

A showcase of various grasses and dirts.

[image: _images/settings.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

Properties

grass

[image: _images/grass.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Grass Blocks.

dirt_path

[image: _images/path.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for grass path blocks [https://minecraft.wiki/w/Grass_Path].

mycelium

[image: _images/mycelium.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Mycelium.

podzol

[image: _images/podzol.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Podzol.

crimson_nylium

[image: _images/crimson_nylium.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Crimson Nylium [https://minecraft.wiki/w/Nylium].

New in version H5.

warped_nylium

[image: _images/warped_nylium.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Warped Nylium [https://minecraft.wiki/w/Nylium].

New in version H5.

grass.snow

[image: _images/grass_snow.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Grass Blocks that have a
snow layer [https://minecraft.wiki/w/Snow] or
snow block [https://minecraft.wiki/w/Snow_Block] on top of them.

mycelium.snow

[image: _images/mycelium_snow.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Mycelium that has a
snow layer [https://minecraft.wiki/w/Snow] or
snow block [https://minecraft.wiki/w/Snow_Block] on top of them.

podzol.snow

[image: _images/podzol_snow.webp]

Values: Boolean

Optional

Default: true

Enables Better Grass for Podzol that have a
snow layer [https://minecraft.wiki/w/Snow] or
snow block [https://minecraft.wiki/w/Snow_Block] on top of them.

grass.multilayer

Values: Boolean

Optional

Default: false

Allows a transparent grass texture to be used as an overlay for the
grass block's side. If enabled, a transparent grass texture can overlay it.

If enabled:

	Layer 1: grass_side

	Layer 2: grass (colored by biome)

texture.grass

Values: String: File path

Optional

Default: block/grass_block_top

What texture to use for the top of a grass block that has Better Grass applied to it.

Note

This texture will be tinted (colored) by biome.

texture.grass_side

Values: String: File path

Optional

Default: block/grass_block_side

What texture to use for the side of a grass block that has Better Grass applied to it.

texture.dirt_path

Values: String: File path

Optional

Default: block/dirt_path_top

What texture to use for the top of a dirt path block that has Better Grass applied to it.

texture.dirt_path_side

Values: String: File path

Optional

Default: block/dirt_path_side

What texture to use for the side of a dirt path block that has Better Grass applied to it.

texture.mycelium

Values: String: File path

Optional

Default: block/mycelium_top

What texture to use for the top of a Mycelium block that has Better Grass applied to it.

texture.podzol

Values: String: File path

Optional

Default: block/podzol_top

What texture to use for the top of a Podzol block that has Better Grass applied to it.

texture.crimson_nylium

Values: String: File path

Optional

Default: block/crimson_nylium

What texture to use for the top of a Crimson Nylium [https://minecraft.wiki/w/Nylium]
block that has Better Grass applied to it.

New in version H5.

texture.warped_nylium

Values: String: File path

Optional

Default: block/warped_nylium

What texture to use for the top of a Warped Nylium [https://minecraft.wiki/w/Nylium]
block that has Better Grass applied to it.

New in version H5.

texture.snow

Values: String: File path

Optional

Default: block/snow

What texture to use for the top of a Snow block [https://minecraft.wiki/w/Snow_block]
that has Better Grass applied to it.

Examples

Only Grass

mycelium=false
podzol=false

Not Grass

grass=false
dirt_path=false
crimson_nylium=false
warped_nylium=false

Texture for grass sides

texture.grass_side=block/redstone_block
texture.grass=block/emerald_block

Disable snowy blocks

grass.snow=false
mycelium.snow=false
podzol.snow=false

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/better_grass.schema.json",
	"title": "Better Grass",
	"description": "Better Grass shows the side grass texture on grass blocks that are near other grass blocks.",
	"type": "object",
	"properties": {
		"grass": {
			"type": "boolean",
			"description": "Enables Better Grass for Grass Blocks.",
			"default": true
		},
		"dirt_path": {
			"type": "boolean",
			"description": "Enables Better Grass for grass path blocks.",
			"default": true
		},
		"mycelium": {
			"type": "boolean",
			"description": "Enables Better Grass for Mycelium.",
			"default": true
		},
		"podzol": {
			"type": "boolean",
			"description": "Enables Better Grass for Podzol.",
			"default": true
		},
		"crimson_nylium": {
			"type": "boolean",
			"description": "Enables Better Grass for Crimson Nylium.",
			"default": true
		},
		"warped_nylium": {
			"type": "boolean",
			"description": "Enables Better Grass for Warped Nylium.",
			"default": true
		},
		"grass.snow": {
			"type": "boolean",
			"description": "Enables Better Grass for Grass Blocks that have a snow layer or snow block on top of them.",
			"default": true
		},
		"mycelium.snow": {
			"type": "boolean",
			"description": "Enables Better Grass for Mycelium that has a snow layer or snow block on top of them.",
			"default": true
		},
		"podzol.snow": {
			"type": "boolean",
			"description": "Enables Better Grass for Podzol that has a snow layer or snow block on top of them.",
			"default": true
		},
		"grass.multilayer": {
			"type": "boolean",
			"description": "Allows a transparent grass texture to be used as an overlay for the grass block's side.",
			"default": false
		},
		"texture.grass": {
			"default": "block/grass_block_top",
			"description": "What texture to use for the top of a grass block which has Better Grass applied to it.",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.grass_side": {
			"default": "block/grass_block_side",
			"description": "What texture to use for the side of a grass block which has Better Grass applied to it.",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.dirt_path": {
			"description": "What texture to use for the top of a dirt path block which has Better Grass applied to it.",
			"default": "block/dirt_path_top",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.dirt_path_side": {
			"description": "What texture to use for the side of a dirt path block which has Better Grass applied to it.",
			"default": "block/dirt_path_side",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.mycelium": {
			"description": "What texture to use for the top of a Mycelium block which has Better Grass applied to it.",
			"default": "block/mycelium_top",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.podzol": {
			"default": "block/podzol_top",
			"description": "What texture to use for the top of a Podzol block which has Better Grass applied to it.",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.crimson_nylium": {
			"description": "What texture to use for the top of a Crimson Nylium block which has Better Grass applied to it.",
			"default": "block/crimson_nylium",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.warped_nylium": {
			"default": "block/warped_nylium",
			"description": "What texture to use for the top of a Warped Nylium block which has Better Grass applied to it.",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"texture.snow": {
			"description": "What texture to use for the top of a Snow block which has Better Grass applied to it.",
			"default": "block/snow",
			"$ref": "common.schema.json#/$defs/resource"
		}
	},
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Better Snow

 Better Snow

[image: _images/icon.webp]

Fence with snow "inside" it.

Better Snow shows a snow layer beneath specific blocks that have a snow layer [https://minecraft.wiki/w/Snow] or snow block [https://minecraft.wiki/w/Snow_Block] near them.

[image: _images/settings1.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

Block list

	Glass panes

	Tall grass

	Grass

	Ferns

	Flowers

	Fences

	Fence gates

	Hoppers

	Saplings

	Iron bars

	Walls

[image: _images/selection1.webp]

A grass platform with snow layers on one row and various blocks on the other.
For example, the glass pane has no snow below it, but since there is a snow layer next to it, it shows as having a snow layer inside it.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Block Render Layers

 Block Render Layers

File location

(shaderpack)/shaders/block.properties

Block Render Layers changes how blocks' textures are rendered and in what order.

Warning

Blocks which are solid opaque cubes (stone, dirt, ores, etc) can't be rendered on a custom layer as this would
affect face culling, ambient occlusion, light propagation and so on.

Properties

layer.solid

Values: List of blocks

Optional

No alpha, no blending (solid textures).

layer.cutout

Values: List of blocks

Optional

Alpha, no blending (cutout textures).

layer.cutout_mipped

Values: List of blocks

Optional

Alpha, no blending, mipmaps (cutout with mipmaps)

layer.translucent

Values: List of blocks

Optional

Alpha, blending, mipmaps (water, stained glass).

Example

layer.translucent=glass_pane fence wooden_door
layer.cutout=oak_stairs
layer.solid=stone dirt

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/block_render_layers.schema.json",
	"title": "Block Render Layers",
	"description": "The custom block render layers are defined in ``shaders/block.properties`` included in a shader pack.",
	"type": "object",
	"properties": {
		"layer.solid": {
			"description": "No alpha, no blending (solid textures).",
			"$ref": "common.schema.json#/$defs/item_id_list"
		},
		"layer.cutout": {
			"description": "No alpha, no blending (cutout textures).",
			"$ref": "common.schema.json#/$defs/item_id_list"
		},
		"layer.cutout_mipped": {
			"description": "Alpha, no blending, mipmaps (cutout with mipmaps).",
			"$ref": "common.schema.json#/$defs/item_id_list"
		},
		"layer.translucent": {
			"description": "Alpha, blending, mipmaps (water, stained glass).",
			"$ref": "common.schema.json#/$defs/item_id_list"
		}
	},
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Entity Models

 Custom Entity Models

[image: _images/icon2.webp]

He's had surgery

File location

/assets/minecraft/optifine/cem/**/*.jem
/assets/minecraft/optifine/cem/**/*.jpm

Custom Entity Models (CEM) can completely change how an entity appears, animates, and moves.

The file format for CEM are JSON [https://en.wikipedia.org/wiki/JSON] with the extensions .jem and .jpm.

Model files (.jem) contain a list of entity part models, which may be loaded inline or from a file .jpm file.
These model files define a texture, and a list of submodels. These submodels define what part of an entity they attach to, how they attach, their animations, and more.

[image: _images/settings2.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

[image: _images/cem_ewan.webp]
 [https://www.youtube.com/watch?v=arj2eim42KI]

	 Models
	Keys

	Randomized models

	JSON schema

	 Parts
	Keys

	Texture UV

	JSON schema

	 Animation
	Keys

	Values

	Examples

	Tutorial

	JSON schema

	 Entity names
	Table

	 Limitations
	Parent bones

	Pivot points

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Models

 Models

[image: _images/icon_models.webp]

A 3D model in Blockbench [https://www.blockbench.net/].

File location

/assets/minecraft/optifine/cem/**/*.jem

CEM model files contain the definition of a whole entity model. It is written in JSON.

They may be located anywhere inside the cem folder.
The name of the file must match one of the entity names in Entity names,
or be in the folder /assets/minecraft/optifine/cem/<entity name>.

Keys

texture

Values: File path

Optional

Texture used by entity model.

textureSize

Values: Array of 2 integers

Optional

Texture size in pixels; [width, height].

shadowSize

Values: Decimal

Optional

Shadow size as a scale, from 0.0 to 1.0.

models

Values: List of objects

Required

Array of model objects that make up the entity's full model.

baseId

Values: String

Optional

Model parent ID. If specified, all parent properties are inherited and do not need to be explicitly put.

model

Values: File path

Optional

Path to a part model file (.jpm) from which to load the part model definition.

If this is not specified, the items in a JPM can be specified inline to this object, the parent of "model".

id

Values: String

Optional

Model ID, can be used to reference the model as parent.

part

Values: String

Required

Entity part to which the part model is attached.

See Entity names for a list of part names for each entity.

Important

Make sure that the part names correspond with your model's applicable entity.

attach

Values: Boolean

Optional

How to handle replacing overlapping parts.

	True: Attach (add) to the entity part.

	False: Replace the entity part.

scale

Values: Float

Optional

Default: 1.0

Render scale.
0.0 makes it "invisible".

Part model definitions

All of the items in a CEM parts file can be put here instead, if model is absent.

animations

Values: List of objects

Optional

Default: []

Refer to CEM animation for what to place in each object in this list.

Randomized models

The alternative models use the same name as the main model with a number suffix.

For example:

	wolf.jem - main model (index 1)

	wolf2.jem - alternative model (index 2)

	wolf3.jem - alternative model (index 3)

The alternative models are selected randomly based on the entity ID.

To customize the use of the alternative models, add a <model_name>.properties file in the folder where the models are located.

The properties file works identically to the properties file used by Random Entities.
The models to be used are selected with the setting models.<n>=<list> instead of textures.<n>=<list>.
The index of the current matching rule is available as the animation parameter rule_index, and can be used to cutomize the model depending on entity properties.

For more details, see Random Entities.

Examples

creeper.properties, creeper.jem, creeper2.jem

models.1=2
name.1=James

boat.properties, boat.jem, boat2.jem, boat3.jem

models.1=2
nbt.1.Type=spruce

models.2=3
nbt.2.Type=birch

bed.properties, bed.jem, bed2.jem, bed3.jem

models.1=2
models.1=2
name.1=James
blocks.1=black_bed

models.2=3
blocks.2=orange_bed

JSON schema

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/cem_model.schema.json",
	"title": "Custom Entity Models Model",
	"description": "CEM model files contain the definition of a whole entity model.",
	"type": "object",
	"properties": {
		"texture": {
			"$ref": "common.schema.json#/$defs/resource",
			"description": "Texture used by entity model."
		},
		"textureSize": {
			"type": "array",
			"minItems": 2,
			"maxItems": 2,
			"items": {
				"type": "integer"
			},
			"description": "Texture size in pixels; [width, height]."
		},
		"shadowSize": {
			"type": "number",
			"minimum": 0,
			"maximum": 1,
			"description": "Shadow size as a scale, from 0.0 to 1.0."
		},
		"models": {
			"type": "array",
			"description": "Array of model objects that make up the entity's full model.",
			"items": {
				"type": "object",
				"properties": {
					"baseId": {
						"type": "string",
						"description": "Model parent ID. If specified, all parent properties are inherited and do not need to be explicitly put."
					},
					"model": {
						"type": "string",
						"$ref": "common.schema.json#/$defs/resource",
						"description": "Path to a JPM from which to load the part model definition. If this is not specified, the items in a JPM can be specified inline to this object, the parent of \"model\"."
					},
					"id": {
						"type": "string",
						"description": "Model ID, can be used to reference the model as parent."
					},
					"part": {
						"type": "string",
						"description": "Entity part to which the part model is attached."
					},
					"attach": {
						"type": "boolean",
						"description": "How to handle replacing overlapping parts. If true, attach. If false, replace."
					},
					"scale": {
						"type": "number",
						"minimum": 0,
						"description": "Render scale. 0.0 is invisible."
					},
					"animations": {
						"$ref": "cem_anim.schema.json#/properties/animations"
					}
				},
				"required": [
					"part"
],
				"allOf": [
					{
						"$ref": "cem_part.schema.json"
					}
]
			}
		}
	},
	"required": [
		"models"
],
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Parts

 Parts

File location

/assets/minecraft/optifine/cem/**/*.jpm

CEM part files contain the definition of one model part to be referenced in a CEM model file.

Keys

invertAxis

Values: String: permutation of "xyz"

Optional

Axes to invert: "xyz" inverts the X, Y, Z axes.
An empty string inverts none of them and is equal the key being absent.

translate

Values: Array of 3 integers

Optional

Translate [https://en.wikipedia.org/wiki/Translation_(geometry)] (move) the texture by the 3 integers x, y, and z.

rotate

Values: Array of 3 integers

Optional

Rotation [https://en.wikipedia.org/wiki/Rotation] (spin) the texture by the 3 integers angle_x, angle_y, and angle_z.

mirrorTexture

Values: String permutation of "uv"

Optional

Texture axis to mirror.
"uv" will mirror both the U and V axis.
An empty string mirrors along no axis and is equal the key being absent.

boxes

Values: Array of objects

Optional

Array of part model boxes.

textureOffset

Values: Array of 2 integers

Required

Texture offset for the box format; [x, y].

uv<FACE>

Values: Array of 4 strings

Required

<FACE> is one of Down, Up, North, South, West, or East.

UV for face. Ordered as [u1, v1, u2, v2].

coordinates

Values: Array of 6 integers

Required

Box position and dimensions.
Ordered as [x, y, z, width, height, depth].

sizeAdd

Values: Integer

Optional

Size increment added to all dimensions; can be used for asymmetric scaling.

sprites

Values: Array of objects

Optional

List of 3D sprite models; depth 1.

textureOffset

Values: Array of 2 integers

Required

Texture offset; [x, y].

coordinates

Values: Array of 6 integers

Required

Box position and dimensions.
Ordered as [x, y, z, width, height, depth].

sizeAdd

Values: Integer

Optional

Size increment added to all dimensions; can be used for asymmetric scaling.

submodel

Values: Self, CEM part object

Optional

A sub-model part; attached to the parent, moving and rotating with it.

submodels

Values: List of CEM part objects

Optional

A list of sub-model parts; attached to the parent, moving and rotating with it.

Texture UV

Warning

Texture UV cannot have both specifications, either "textureOffset" or uv<face>, not both.

Texture UV can be specified in box format with:

	"textureOffset", or

	"uvDown", "uvUp", "uvNorth", "uvSouth", "uvWest", and "uvEast".

[image: _images/model_box.webp]

The box format UV mapping.

JSON schema

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/cem_part.schema.json",
	"title": "Custom Entity Models Part",
	"description": "CEM parts contains definition of one model part for a whole CEM model.",
	"type": "object",
	"properties": {
		"texture": {
			"type": "string",
			"description": "Texture used by entity model.",
			"$ref": "common.schema.json#/$defs/resource"
		},
		"textureSize": {
			"type": "array",
			"items": {
				"type": "integer"
			},
			"minItems": 2,
			"maxItems": 2,
			"description": "Texture size (width, height) in pixels."
		},
		"invertAxis": {
			"type": "string",
			"maxLength": 3,
			"pattern": "^([xyz])?((?!\\1)[xyz])?((?!\\1)(?!\\2)[xyz])?((?!\\1)(?!\\2)(?!\\3))?$",
			"description": "Axes to invert; \"xyz\" inverts the X, Y, and Z axes, \"\" inverts none of them."
		},
		"translate": {
			"type": "array",
			"minItems": 3,
			"maxItems": 3,
			"items": {
				"type": "integer"
			},
			"description": "Translate texture by [0], [1], [2]."
		},
		"rotate": {
			"type": "array",
			"minItems": 3,
			"maxItems": 3,
			"items": {
				"type": "integer"
			},
			"description": "Rotate texture by [0], [1], [2]."
		},
		"mirrorTexture": {
			"type": "string",
			"minLength": 2,
			"maxLength": 2,
			"pattern": "^([uv])?((?!\\1)[uv])?((?!\\1)(?!\\2)[uv])?$"
		},
		"boxes": {
			"type": "array",
			"items": {
				"type": "object",
				"properties": {
					"textureOffset": {
						"$ref": "#/$defs/textureOffset"
					},
					"coordinates": {
						"$ref": "#/$defs/coordinates"
					},
					"sizeAdd": {
						"$ref": "#/$defs/sizeAdd"
					}
				},
				"patternProperties": {
					"^uv(Down|Up|North|South|West|East)$": {
						"type": "array",
						"minItems": 4,
						"maxItems": 4,
						"items": {
							"type": "string"
						},
						"description": "UV for face."
					}
				}
			},
			"description": "List of part model boxes."
		},
		"sprites": {
			"type": "array",
			"items": {
				"type": "object",
				"properties": {
					"textureOffset": {
						"$ref": "#/$defs/textureOffset"
					},
					"coordinates": {
						"$ref": "#/$defs/coordinates"
					},
					"sizeAdd": {
						"$ref": "#/$defs/sizeAdd"
					}
				}
			}
		},
		"submodel": {
			"type": "object",
			"$ref": "#",
			"description": "Submodel; attached to the parent, moving and rotating with it."
		},
		"submodels": {
			"type": "array",
			"items": {
				"type": "object",
				"$ref": "#"
			},
			"description": "List of submodels; attached to the parent, moving and rotating with it."
		}
	},
	"allOf": [
		{
			"anyOf": [
				{
					"required": [
						"textureOffset"
]
				},
				{
					"required": [],
					"patternProperties": {
						"^(?!(uv(Down|Up|North|South|West|East))$).*$": {}
					}
				}
]
		},
		{
			"required": [
				"coordinates"
]
		}
],
	"$defs": {
		"textureOffset": {
			"type": "array",
			"items": {
				"type": "integer"
			},
			"minItems": 2,
			"maxItems": 2,
			"description": "Texture offset for the box format."
		},
		"coordinates": {
			"type": "array",
			"minItems": 6,
			"maxItems": 6,
			"items": {
				"type": "integer"
			},
			"description": "Box position and dimensions. x, y, z, width, height, depth."
		},
		"sizeAdd": {
			"type": "number",
			"minimum": 0,
			"maximum": 65535,
			"description": "Size increment added to all dimensions; can be used for asymmetric scaling."
		}
	},
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Animation

 Animation

[image: _images/icon_animation.webp]

Bendy creeper.

This is the reference configuration for animating OptiFine's Custom Entity Models (CEMA).

Important

These apply inside of Models and this document is kept separate for organizational purposes only. It is not a separate file.

Each model variable which is to be animated is assigned a mathematical expression.
The expression is evaluated every time the model is rendered and its value is assigned to the variable.
This value controls the positions, scales, rotations, etc. of the parts of the model.

Important

Animations must be in the parent bone, not any sub-bone.

The variables and expressions are defined in the "animations" section of the JSON entity model (JEM):

{
 "animations": [
 {
 "variable1": "expression1",
 "variable2": "expression2"
 }
]
}

Keys

Variables make up the keys of the items in the objects in the "animations" list.
They are strings that refer to different values that control an entity.

For example, in the object {"a": 5}, "a" is the key and 5 is the value.

Model variables

Model variables are specified in the format <model>.<variable_name>.

The <model> can be one of:

	this: the current custom model.

	part: the original part model to which the custom model is attached.

	<part>: the original model by part name.

	<id>: the custom model by an assigned ID.

	<part>:<sub_id>:<sub_sub_id>:...: (hierarchical) start with the original model by part name, then find its children by ID.

	<id>:<sub_id>:<sub_sub_id>:...: (hierarchical) start with the original model by ID, then find children its by ID.

The first model found by part name or ID is used if there are duplicates.
The model search by ID is deep, and is also deep when used in a hierarchical specification.

The hierarchical specification allows model groups (JSON part models) to be reused for different parts.
For example, one hand model (shoulder:upper_arm:elbow:forearm:palm:finger[1.5]) can be used for both left and right hands;
left_hand:finger1 can be for the left thumb and right_hand:finger1 for the right thumb.

The intermediate parents in the hierarchical specification can be skipped.

Model variable names

	tx, ty, tz: translation x, y, z (movement).

	rx, ry, rz: rotation x, y, z (spin, yaw, pitch).

	sx, sy, sz: scale x, y, z (size).

	visible: show model and submodels (boolean).

	visible_boxes: show model only; this does not affect submodels (boolean).

New in version H9: visible and visible_boxes

Entity variables

Warning

Entity variables are not supported for block entities [https://minecraft.wiki/w/Block_entity].

Entity variables are user-defined variables that contain a formula that is calculated every frame.
These variables are associated with the rendered entity in-memory. They are not "stored" with the entity in the game itself; unloading and reloading the world will reset them.

Entity variables can be specified in 2 formats:

	var.<name> for floats (decimals, numbers).

	varb.<name> for booleans (true, false).

Where <name> may be any string; var.xyz, var.last_rx, var.cookies_in_the_cookie_jar are all valid entity variables.

Their default value when first calculated is 0 or false for var and varb, respectively.
For instance, the first calculation of "var.xyz": "var.xyz + 1" is 1 (var.xyz = 0; var.xyz + 1 = 0 + 1 = 1.

Entity variables are useful for storing animation data between frames or storing constants for animation configuration.

New in version H9: varb

Render variables

New in version H9.

	render.shadow_size: The size of the entity's shadow; this is a float from 1.0 (opaque) to 0.0 (invisible).

	render.shadow_opacity: The opacity (solidness) of the entity's shadow.

	render.leash_offset_x: When leashed, where the leash on the entity attachs to.

	render.leash_offset_y

	render.leash_offset_z

	render.shadow_offset_x: An offset of the entity's shadow position.

	render.shadow_offset_z

Values

Expressions make up the values of the items in the objects in the "animations" list.
They are general mathematical expressions with brackets, constants, variables, operators, parameters, and functions.

Hint

They most closely resemble the AsciiMath [https://en.wikipedia.org/wiki/AsciiMath] format, although they are not identical.

Optionally-grouped variables, constants, parameters, and functions are separated by operators and evaluated as normal math expressions.
For example, sin(35)+max(5,50,500) evaluates to 500.5735764.

Constants

Constants never change and always evaluate to the same value.

	Name

	Type

	Meaning

	pi

	Float, constant

	Floating point, equal to 3.1415926.

	true

	Boolean, constant

	Truthy boolean.

	false

	Boolean, constant

	False boolean.

Variables

Variables change and are most often used to change something with time.

Not to be confused with

Keys; these are expression variables.

	Name

	Type

	Meaning

	<model>.<var>

	Any

	A model variable's value, see the Model variables section.

	time

	Integer, ticks

	The total game time in ticks (0..720720); not related to the daylight cycle.

	day_time

	Integer, ticks

	
	The current day time in ticks (0..24000).
	
New in version I3.

	day_count

	Integer

	
	The current day count.
	
New in version I3.

Render parameters

Render parameters are variables whose values are generally independent of the entity being rendered, but not always.

	Name

	Type

	Meaning

	limb_swing

	Float

	Counts up in ticks from 0 as the entity continues to move.

	limb_speed

	Float

	The current speed of the entity's limbs. Ranges from 0.0 (still) to 1.0 (sprinting).

	age

	Float

	How long the entity has existed in the world, in ticks.

	head_yaw

	Float

	Head yaw; x rotation.

	head_pitch

	Float

	Head pitch; y rotation.

	player_pos_x

	Float

	
	Player's X position (not necessarily the same entity).
	
New in version H8.

	player_pos_y

	Float

	
	Player's Y position (not necessarily the same entity).
	
New in version H8.

	player_pos_z

	Float

	
	Player's Z position (not necessarily the same entity).
	
New in version H8.

	player_rot_x

	Float

	
	Player's yaw [https://en.wikipedia.org/wiki/Yaw_(rotation)] (left-right).
	
New in version H8.

	player_rot_y

	Float

	
	Player's pitch [https://en.wikipedia.org/wiki/Aircraft_principal_axes#Transverse_axis_(pitch)] (up-down).
	
New in version H8.

	frame_time

	Float

	
	Time in seconds since the last frame.
	
New in version H9.

	dimension

	Integer

	
	Dimension ID, -1 = Nether, 0 = Overworld, 1 = End.
	
New in version H9.

	rule_index

	Integer

	
	The index of the current matching random models rule. Defaults to 0.
	
New in version I1.

Entity parameters

Entity parameters are variables that are generally unique to the entity itself: is the entity glowing, is it angry, etc.

	Name

	Type

	Meaning

	
	Floats

	

	health

	Float

	Entity's current health.

	hurt_time

	Float

	Time stage of when entity has been hurt once. Counts down from 10 to 0.

	death_time

	Float

	
	Time stage on entity's death. Counts up from 0 to 20.
	
New in version H8.

	anger_time

	Float

	
	The time the entity has been angry. 0 while neutral, 720 while aggressive, counts down to 0 when the target is lost.
	
New in version H9.

	max_health

	Float

	Entity's maximum health.

	move_forward

	Float

	How much entity is moving forwards-backwards, currently broken.

	move_strafing

	Float

	How much entity is moving left-right, currently broken.

	pos_x

	Float

	Entity's X position.

	pos_y

	Float

	Entity's Y position.

	pos_z

	Float

	Entity's Z position.

	rot_x

	Float

	
	Entity's X-axis rotation.
	
New in version H8.

	rot_y

	Float

	
	Entity's Y-axis rotation.
	
New in version H8.

	swing_progress

	Float

	How far through the attack animation the entity is; counts up from 0.0 to 1.0.

	id

	Float

	
	A unique numeric identifier.
	
New in version H8.

	
	Booleans

	

	is_aggressive

	Boolean

	
	If the entity is aggressive towards another entity.
	
New in version H9.

	is_alive

	Boolean

	If the entity is alive; not dead.

	is_burning

	Boolean

	If the entity is burning.

	is_child

	Boolean

	If the entity is a child.

	is_glowing

	Boolean

	If the entity has the Glowing [https://minecraft.wiki/w/Glowing] status effect.

	is_hurt

	Boolean

	If the entity is taking damage.

	is_in_hand

	Boolean

	If the entity (items) is being held in your hand.

	is_in_item_frame

	Boolean

	
	If the entity (items) is in an item frame.
	
New in version H7.

	is_in_ground

	Boolean

	If the entity is embedded into a block (arrows, tridents).

	is_in_gui

	Boolean

	If the entity is inside the GUI

	is_in_lava

	Boolean

	If the entity is touching lava.

	is_in_water

	Boolean

	If the entity is touching water.

	is_invisible

	Boolean

	If the entity has the Invisibility [https://minecraft.wiki/w/Invisibility] status effect.

	is_on_ground

	Boolean

	If the entity is on the ground; not flying.

	is_on_head

	Boolean

	
	If the entity (items) is on an armor head slot.
	
New in version H7.

	is_on_shoulder

	Boolean

	
	If the entity is on a player's shoulder (parrots).
	
New in version H9.

	is_ridden

	Boolean

	If the entity is being ridden by another entity.

	is_riding

	Boolean

	If the entity is riding atop of another entity.

	is_sitting

	Boolean

	
	If the entity is sitting (cat, wolf, parrot).
	
New in version H9.

	is_sneaking

	Boolean

	If the entity (cats) is crouching/sneaking.

	is_sprinting

	Boolean

	If the entity (cats) is sprinting.

	is_tamed

	Boolean

	
	If the entity is tamed (dogs, cats).
	
New in version H9.

	is_wet

	Boolean

	If the entity is under rain or is inside a water block.

Operators

	Name

	Meaning

	+, -, *, /, %

	add, subtract, multiply, divide, modulo [https://en.wikipedia.org/wiki/Modulo]

	!, &&, ||

	negate, logical AND, logical OR

	>, >=, <, <=, ==, !=

	greater than, greater than or equal to, less than, less than or equal to, is equal to, is not equal to

Numerical functions

These functions return a number.

	Name

	Parameters

	Return

	sin(x)

	x: any number

	Sine [https://en.wikipedia.org/wiki/Sine] of degrees x.

	cos(x)

	x: any number

	Cosine [https://en.wikipedia.org/wiki/Cosine] of degrees x.

	asin(x)

	x: any number

	Arcsine [https://en.wikipedia.org/wiki/Arcsine] of degrees x.

	acos(x)

	x: any number

	Arccosine [https://en.wikipedia.org/wiki/Arccosine] of degrees x.

	tan(x)

	x: any number

	Tangent [https://en.wikipedia.org/wiki/Tangent_(trigonometry)] of degrees x.

	atan(x)

	x: any number

	Arctangent [https://en.wikipedia.org/wiki/Arctangent] of degrees x.

	atan2(y, x)

	y: any number, x: any number

	Two-argument arctangent [https://en.wikipedia.org/wiki/Atan2] of y and x.

	torad(deg)

	deg: any degree

	Convert degrees [https://en.wikipedia.org/wiki/Degree_(angle)] to radians [https://en.wikipedia.org/wiki/Radian].

	todeg(rad)

	rad: any radian

	Convert radians [https://en.wikipedia.org/wiki/Radian] to degrees [https://en.wikipedia.org/wiki/Degree_(angle)].

	min(x[, y...]

	x...: any number

	The minimum of all given parameters.

	max(x[, y...]

	x...: any number

	The maximum of all given parameters.

	clamp(x, min, max)

	x, min, max: any number

	x, guaranteed to be between min and max values; if x > max, x = max, x < min, x = min.

	abs(x)

	x: any number

	The absolute value of x; abs(-5) == 5.

	floor(x)

	x: any number

	The floor [https://en.wikipedia.org/wiki/Floor_(function)] of x; floor(2.9) == 2.

	ceil(x)

	x: any number

	The ceiling [https://en.wikipedia.org/wiki/Ceiling_(function)] of x; ceil(2.1) == 3.

	exp(x)

	x: any number

	e (Euler's constant) raised to the power of x; exp(4) == 54.598150033144236.

	frac(x)

	x: any decimal

	The decimal of x; frac(11.4) == 0.4.

	log(x)

	x: any number

	The logarithm [https://en.wikipedia.org/wiki/Logarithm] of x; log(50) == 3.912023005428146.

	pow(x, y)

	x: any number, y: any positive number

	Raise base x to the power y; pow(5, 2) == 25

	random(seed)

	seed: any integer

	
	A random number between 0.0 and 1.0. seed is optional and if given, this returns the same result.
	
New in version H8.

	round(x)

	x: any decimal

	Rounded [https://en.wikipedia.org/wiki/Rounding] x; round(5.4) == 5.

	signum(x)

	x: any number

	The sign [https://en.wikipedia.org/wiki/Sign_function] of x; signum(0) == 0, signum(-5253) == -1.

	sqrt(x)

	x: any positive number

	The square root [https://en.wikipedia.org/wiki/Square_root] of x; sqrt(25) == 5.

	fmod(x, y)

	x, y: any number

	Similar to Java's floorMod function [https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-], x - (floorDiv(x, y) * y); if the signs of the arguments are the same, the results of fmod and the % operator are the same, but if the signs of the arguments are different, the results differ: floorMod(+4, -3) == -2, (+4 % -3) == +1

	lerp(k, x, y)

	k, x, y: any number

	
	The linear interpolation [https://en.wikipedia.org/wiki/Linear_interpolation] of x and y; (1 - k) * x + k * y.
	
New in version H9.

	if(cond, val[, cond2, val2, ...], val_else)

	cond: condition string, val: any value, val_else: any value

	Select a value based on one of more conditions: return val if cond is true, return val_else if cond is false

	print(id, n, x)

	id: any number, n: frame interval, x: value to print

	
	Prints x in the log every n-th frame, under id.
	
New in version H8.

	printb(id, n, x)

	id: any number, n: frame interval, x: boolean to print

	
	Prints x boolean in the log every n-th frame, under id.
	
New in version H9.

Boolean functions

These functions return either true or false.

	Name

	Parameters

	Tests

	between(x, min, max)

	x, min, max: any number

	Is x between min and max?

	equals(x, y, epsilon)

	x, y, epsilon: any number

	Is the difference of x and y within error margin epsilon? abs(x-y) < epsilon

	in(x, val1[, val2...])

	x, val1...: any number

	Is x equivalent to any of of val1...?

Examples

Basic structure

{
 "animations": [
 {
 "this.rx": "clamp(-0.5 * part.rx, 0, 90)",
 "this.tx": "3 * sin(limb_swing / 4) - 2",
 "this:Hoof.rx": "if(leg4:Hoof.rx > 90, leg4:Hoof.rx - 90, 0)"
 }
]
}

Walking animation

x is a multipler to control how fast the leg swings back and forth,
and y is a multiplier to control how far it swings back and forth.

"left_leg.rx": "sin(limb_swing * x) * limb_speed * y"

Attack animation

x is a multipler for how much it rotates.

"head.rx": "sin(swing_progress * pi) * x"

Hurt animation

x is a multipler for how much it rotates.

"head.rx": "-sin(hurt_time / pi) * x"

Custom counter

This is a counter that will count up while an entity is in water, and count down again when it leaves.

"var.counter": "if(is_in_water, min(20, var.counter + 0.1 * frame_time * 20), max(0, var.counter - 0.1 * frame_time * 20))"

If statements

The leg will rotate by 45 degrees when the entity is not on the ground, otherwise it will stay at 0 deg.

"left_leg.rx": "if(!is_on_ground, torad(45), 0)"

The body will tilt forwards once the entity hits a certain movement speed.

"body.rx": "if(limb_speed > 0.7, torad(20), 0)"

Tutorial

[image: _images/cem_ewan.webp]
 [https://www.youtube.com/watch?v=arj2eim42KI]

 Entity names

 Entity names

[image: _images/icon_entity_names.webp]

Too many names

This is a table of entity and part names. Part names must be matched with the entity they will apply to.

Table

	Entity name

	Part name

	allay [https://minecraft.wiki/w/allay]

	head, body, left_arm, right_arm, left_wing, right_wing

	armor_stand [https://minecraft.wiki/w/armor_stand]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg, right, left, waist, base

	axolotl [https://minecraft.wiki/w/axolotl]

	head, body, leg1 ... leg4, tail, top_gills, left_gills, right_gills

	banner [https://minecraft.wiki/w/banner]

	slate, stand, top

	bat [https://minecraft.wiki/w/bat]

	head, body, right_wing, left_wing, outer_right_wing, outer_left_wing, feet

	bee [https://minecraft.wiki/w/bee]

	body, torso, right_wing, left_wing, front_legs, middle_legs, back_legs, stinger, left_antenna, right_antenna

	bed [https://minecraft.wiki/w/bed]

	head, foot, leg1 ... leg4

	bell [https://minecraft.wiki/w/bell]

	body

	blaze [https://minecraft.wiki/w/blaze]

	head, stick1 ... stick12

	boat [https://minecraft.wiki/w/boat]

	bottom, back, front, right, left, paddle_left, paddle_right, bottom_no_water

	breeze [https://minecraft.wiki/w/breeze]

	body, rods, head, wind_body, wind_middle, wind_bottom, wind_top

	breeze_eyes

	body, rods, head, wind_body, wind_middle, wind_bottom, wind_top

	breeze_wind

	body, rods, head, wind_body, wind_middle, wind_bottom, wind_top

	camel [https://minecraft.wiki/w/camel]

	body, hump, tail, head, left_ear, right_ear, back_left_leg, back_right_leg, front_left_leg, front_right_leg, saddle, reins, bridle

	cat [https://minecraft.wiki/w/cat]

	back_left_leg, back_right_leg, front_left_leg, front_right_leg, tail, tail2, head, body

	cat_collar

	back_left_leg, back_right_leg, front_left_leg, front_right_leg, tail, tail2, head, body

	cave_spider [https://minecraft.wiki/w/cave_spider]

	head, neck, body, leg1 ... leg8

	chest [https://minecraft.wiki/w/chest]

	lid, base, knob

	chest_boat [https://minecraft.wiki/w/Boat_with_Chest]

	bottom, back, front, right, left, paddle_left, paddle_right, bottom_no_water, chest_base, chest_lid, chest_knob

	chest_large [https://minecraft.wiki/w/large_chest]

	lid_left, base_left, knob_left, lid_right, base_right, knob_right

	chest_minecart [https://minecraft.wiki/w/Minecart_with_Chest]

	bottom, back, front, right, left, dirt

	chest_raft [https://minecraft.wiki/w/boat]

	bottom, paddle_left, paddle_right, chest_base, chest_lid, chest_knob

	chicken [https://minecraft.wiki/w/chicken]

	head, body, right_leg, left_leg, right_wing, left_wing, bill, chin

	cod [https://minecraft.wiki/w/cod]

	body, fin_back, head, nose, fin_right, fin_left, tail

	command_block_minecart [https://minecraft.wiki/w/command_block_minecart]

	bottom, back, front, right, left, dirt

	conduit [https://minecraft.wiki/w/conduit]

	base, eye, cage, wind

	cow [https://minecraft.wiki/w/cow]

	head, body, leg1 ... leg4

	creeper [https://minecraft.wiki/w/creeper]

	head, armor, body, leg1 ... leg4

	creeper_charge [https://minecraft.wiki/w/Creeper#Charged_creeper]

	head, body, leg1 ... leg4

	decorated_pot [https://minecraft.wiki/w/Decorated_Pot]

	neck, front, back, left, right, top, bottom

	dragon [https://minecraft.wiki/w/ender_dragon]

	head, spine, jaw, body, left_wing, left_wing_tip, right_wing, right_wing_tip, front_left_leg, front_left_shin, front_left_foot, back_left_leg, back_left_shin, back_left_foot, front_right_leg, front_right_shin, front_right_foot, back_right_leg, back_right_shin, back_right_foot

	donkey [https://minecraft.wiki/w/donkey]

	<same as horse>, left_chest, right_chest

	dolphin [https://minecraft.wiki/w/dolphin]

	body, back_fin, left_fin, right_fin, tail, tail_fin, head

	drowned [https://minecraft.wiki/w/drowned]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	drowned_outer

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	elder_guardian [https://minecraft.wiki/w/elder_guardian]

	body, eye, spine1 ... spine12, tail1 ... tail3

	enchanting_book [https://minecraft.wiki/w/enchantment_table]

	cover_right, cover_left, pages_right, pages_left, flipping_page_right, flipping_page_left, book_spine

	ender_chest [https://minecraft.wiki/w/ender_chest]

	lid, base, knob

	end_crystal [https://minecraft.wiki/w/end_crystal]

	cube, glass, base

	enderman [https://minecraft.wiki/w/enderman]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	endermite [https://minecraft.wiki/w/endermite]

	body1 ... body4

	evoker [https://minecraft.wiki/w/evoker]

	head, hat, body, arms, left_leg, right_leg, nose, left_arm, right_arm

	evoker_fangs [https://minecraft.wiki/w/evoker_fangs]

	base, upper_jaw, lower_jaw

	fox [https://minecraft.wiki/w/fox]

	head, body, leg1 ... leg4, tail

	frog [https://minecraft.wiki/w/frog]

	head, body, eyes, tongue, left_arm, right_arm, left_leg, right_leg, croaking_body

	furnace_minecart [https://minecraft.wiki/w/furnace_minecart]

	bottom, back, front, right, left, dirt

	ghast [https://minecraft.wiki/w/ghast]

	body, tentacle1 ... tentacle9

	giant [https://minecraft.wiki/w/giant]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	glow_squid [https://minecraft.wiki/w/glow_squid]

	body, tentacle1 ... tentacle8

	goat [https://minecraft.wiki/w/goat]

	head, body, leg1 ... leg4, left_horn, right_horn, nose

	guardian [https://minecraft.wiki/w/guardian]

	body, eye, spine1 ... spine12, tail1 ... tail3

	hanging_sign [https://minecraft.wiki/w/Sign]

	board, plank, chains, chain_left1, chain_left2, chain_right1, chain_right2, chains_v

	head_dragon [https://minecraft.wiki/w/ender_dragon]

	head, jaw

	head_creeper [https://minecraft.wiki/w/creeper]

	head

	head_piglin [https://minecraft.wiki/w/piglin]

	head

	head_player [https://minecraft.wiki/w/player]

	head

	head_skeleton [https://minecraft.wiki/w/skeleton]

	head

	head_wither_skeleton [https://minecraft.wiki/w/wither_skeleton]

	head

	head_zombie [https://minecraft.wiki/w/zombie]

	head

	hoglin [https://minecraft.wiki/w/hoglin]

	head, right_ear, left_ear, body, front_right_leg, front_left_leg, back_right_leg, back_left_leg, mane

	hopper_minecart [https://minecraft.wiki/w/hopper_minecart]

	bottom, back, front, right, left, dirt

	horse [https://minecraft.wiki/w/horse]

	body, neck, back_left_leg, back_right_leg, front_left_leg, front_right_leg, tail, saddle, head, mane, mouth, left_ear, right_ear, left_bit, right_bit, left_rein, right_rein, headpiece, noseband, child_back_left_leg, child_back_right_leg, child_front_left_leg, child_front_right_leg

	horse_armor [https://minecraft.wiki/w/horse_armor]

	body, neck, back_left_leg, back_right_leg, front_left_leg, front_right_leg, tail, saddle, head, mane, mouth, left_ear, right_ear, left_bit, right_bit, left_rein, right_rein, headpiece, noseband, child_back_left_leg, child_back_right_leg, child_front_left_leg, child_front_right_leg

	husk [https://minecraft.wiki/w/husk]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	illusioner [https://minecraft.wiki/w/illusioner]

	head, hat, body, arms, left_leg, right_leg, nose, left_arm, right_arm

	iron_golem [https://minecraft.wiki/w/iron_golem]

	head, body, left_arm, right_arm, left_leg, right_leg

	lead_knot [https://minecraft.wiki/w/lead]

	knot

	lectern_book [https://minecraft.wiki/w/lectern]

	cover_right, cover_left, pages_right, pages_left, flipping_page_right, flipping_page_left, book_spine

	llama [https://minecraft.wiki/w/llama]

	head, body, leg1 ... leg4, chest_right, chest_left

	llama_decor [https://minecraft.wiki/w/llama]

	head, body, leg1 ... leg4, chest_right, chest_left

	llama_spit [https://minecraft.wiki/w/llama_spit]

	body

	magma_cube [https://minecraft.wiki/w/magma_cube]

	core, segment1 ... segment8

	minecart [https://minecraft.wiki/w/minecart]

	bottom, back, front, right, left, dirt

	mooshroom [https://minecraft.wiki/w/mooshroom]

	head, body, leg1 ... leg4

	mule [https://minecraft.wiki/w/mule]

	<same as horse>, left_chest, right_chest

	ocelot [https://minecraft.wiki/w/ocelot]

	back_left_leg, back_right_leg, front_left_leg, front_right_leg, tail, tail2, head, body

	panda [https://minecraft.wiki/w/panda]

	head, body, leg1 ... leg4

	parrot [https://minecraft.wiki/w/parrot]

	head, body, tail, left_wing, right_wing, left_leg, right_leg

	phantom [https://minecraft.wiki/w/phantom]

	body, left_wing, left_wing_tip, right_wing, right_wing_tip, head, tail, tail2

	puffer_fish_big [https://minecraft.wiki/w/pufferfish]

	body, fin_right, fin_left, spikes_front_top, spikes_middle_top, spikes_back_top, spikes_front_right, spikes_front_left, spikes_front_bottom, spikes_middle_bottom, spikes_back_bottom, spikes_back_right, spikes_back_left

	puffer_fish_medium [https://minecraft.wiki/w/pufferfish]

	body, fin_right, fin_left, spikes_front_top, spikes_back_top, spikes_front_right, spikes_back_right, spikes_back_left, spikes_front_left, spikes_back_bottom, spikes_front_bottom

	puffer_fish_small [https://minecraft.wiki/w/pufferfish]

	body, eye_right, eye_left, tail, fin_right, fin_left

	pig [https://minecraft.wiki/w/pig]

	head, body, leg1 ... leg4

	pig_saddle [https://minecraft.wiki/w/saddle]

	head, body, leg1 ... leg4

	piglin [https://minecraft.wiki/w/piglin]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg, left_ear, right_ear, left_sleeve, right_sleeve, left_pants, right_pants, jacket

	piglin_brute [https://minecraft.wiki/w/piglin_brute]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg, left_ear, right_ear, left_sleeve, right_sleeve, left_pants, right_pants, jacket

	pillager [https://minecraft.wiki/w/pillager]

	head, hat, body, arms, left_leg, right_leg, nose, left_arm, right_arm

	polar_bear [https://minecraft.wiki/w/polar_bear]

	head, body, leg1 ... leg4

	rabbit [https://minecraft.wiki/w/rabbit]

	left_foot, right_foot, left_thigh, right_thigh, body, left_arm, right_arm, head, right_ear, left_ear, tail, nose

	raft [https://minecraft.wiki/w/raft]

	bottom, paddle_left, paddle_right

	ravager [https://minecraft.wiki/w/ravager]

	head, jaw, body, leg1 ... leg4, neck

	salmon [https://minecraft.wiki/w/salmon]

	body_front, body_back, head, fin_back_1, fin_back_2, tail, fin_right, fin_left

	sheep [https://minecraft.wiki/w/sheep]

	head, body, leg1 ... leg4

	sheep_wool [https://minecraft.wiki/w/sheep]

	head, body, leg1 ... leg4

	shulker [https://minecraft.wiki/w/shulker]

	head, base, lid

	shulker_box [https://minecraft.wiki/w/shulker_box]

	base, lid

	shulker_bullet [https://minecraft.wiki/w/shulker_bullet]

	bullet

	sign [https://minecraft.wiki/w/sign]

	board, stick

	silverfish [https://minecraft.wiki/w/silverfish]

	body1 ... body7, wing1 ... wing3

	skeleton [https://minecraft.wiki/w/skeleton]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	skeleton_horse [https://minecraft.wiki/w/skeleton_horse]

	<same as horse>

	slime [https://minecraft.wiki/w/slime]

	body, left_eye, right_eye, mouth

	slime_outer

	body, left_eye, right_eye, mouth

	sniffer [https://minecraft.wiki/w/sniffer]

	body, back_left_leg, back_right_leg, middle_left_leg, middle_right_leg, front_left_leg, front_right_leg, head, left_ear, right_ear, nose, lower_beak

	snow_golem [https://minecraft.wiki/w/snow_golem]

	body, body_bottom, head, left_hand, right_hand

	spawner_minecart [https://minecraft.wiki/w/spawner_minecart]

	bottom, back, front, right, left, dirt

	spider [https://minecraft.wiki/w/spider]

	head, neck, body, leg1, ... leg8

	squid [https://minecraft.wiki/w/squid]

	body, tentacle1 ... tentacle8

	stray [https://minecraft.wiki/w/stray]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	stray_outer

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	strider [https://minecraft.wiki/w/strider]

	body, right_leg, left_leg, hair_right_top, hair_right_middle, hair_right_bottom, hair_left_top, hair_left_middle, hair_left_bottom

	strider_saddle

	body, right_leg, left_leg, hair_right_top, hair_right_middle, hair_right_bottom, hair_left_top, hair_left_middle, hair_left_bottom

	tnt_minecart [https://minecraft.wiki/w/tnt_minecart]

	bottom, back, front, right, left, dirt

	tadpole [https://minecraft.wiki/w/tadpole]

	body, tail

	trader_llama [https://minecraft.wiki/w/trader_llama]

	head, body, leg1 ... leg4, chest_right, chest_left

	trader_llama_decor [https://minecraft.wiki/w/trader_llama]

	head, body, leg1 ... leg4, chest_right, chest_left

	trapped_chest [https://minecraft.wiki/w/trapped_chest]

	lid, base, knob

	trapped_chest_large [https://minecraft.wiki/w/trapped_chest]

	lid_left, base_left, knob_left, lid_right, base_right, knob_right

	tropical_fish_a [https://minecraft.wiki/w/tropical_fish]

	body, tail, fin_right, fin_left, fin_top

	tropical_fish_pattern_a

	body, tail, fin_right, fin_left, fin_top

	tropical_fish_b [https://minecraft.wiki/w/tropical_fish]

	body, tail, fin_right, fin_left, fin_top, fin_bottom

	tropical_fish_pattern_b

	body, tail, fin_right, fin_left, fin_top

	turtle [https://minecraft.wiki/w/turtle]

	head, body, leg1 ... leg4, body2

	vex [https://minecraft.wiki/w/vex]

	head, body, left_arm, right_arm, left_wing, right_wing

	villager [https://minecraft.wiki/w/villager]

	head, headwear, headwear2, body, bodywear, arms, left_leg, right_leg, nose

	vindicator [https://minecraft.wiki/w/vindicator]

	head, hat, body, arms, left_leg, right_leg, nose, left_arm, right_arm

	wandering_trader [https://minecraft.wiki/w/wandering_trader]

	head, headwear, headwear2, body, bodywear, arms, left_leg, right_leg, nose

	warden [https://minecraft.wiki/w/warden]

	body, torso, head, left_leg, right_leg, left_arm, right_arm, left_tendril, right_tendril, left_ribcage, right_ribcage

	wind_charge [https://minecraft.wiki/w/wind_charge]

	core, wind, cube1, cube2, charge

	witch [https://minecraft.wiki/w/witch]

	head, headwear, headwear2, body, bodywear, arms, left_leg, right_leg, nose, mole

	wither [https://minecraft.wiki/w/wither]

	body1 ... body3, head1 ... head3

	wither_armor

	body1 ... body3, head1 ... head3

	wither_skeleton [https://minecraft.wiki/w/wither_skeleton]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	wither_skull [https://minecraft.wiki/w/wither_skull]

	head

	wolf [https://minecraft.wiki/w/wolf]

	head, body, leg1 ... leg4, tail, mane

	wolf_collar

	head, body, leg1 ... leg4, tail, mane

	zoglin [https://minecraft.wiki/w/zoglin]

	head, right_ear, left_ear, body, front_right_leg, front_left_leg, back_right_leg, back_left_leg, mane

	zombie [https://minecraft.wiki/w/zombie]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	zombie_horse [https://minecraft.wiki/w/zombie_horse]

	<same as horse>

	zombie_pigman [https://minecraft.wiki/w/zombie_pigman]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	zombie_villager [https://minecraft.wiki/w/zombie_villager]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg

	zombified_piglin [https://minecraft.wiki/w/zombified_piglin]

	head, headwear, body, left_arm, right_arm, left_leg, right_leg, left_ear, left_sleeve, right_sleeve, left_pants, right_pants, jacket

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Limitations

 Limitations

[image: _images/icon_limitations.webp]

Nuh-uh

While CEM is a powerful feature, it does have some limitations.

Parent bones

On each CEM model, the model is limited to using the parent bones that that entity has by default.
A full list of these can be found here.
Every single element added must be inside one of these parent bones.
Adding a new parent bone will cause the model to fail to load in-game.

Pivot points

The pivot points of the entities cannot be modified in Vanilla.
An example of something that cannot be modified is moving the leg of a cow, as that would require moving its leg's pivot point.

However, this can be done using CEM Animation.
While modelling the entity, pivot points on bones will behave as expected, allowing elements to rotate around a point, however this is not the case for parent bones.

When a template model is loaded, all the parent bones will already have their pivot points set up correctly.
Do not touch these, or the model will break when loaded in-game.

If, for whatever reason, the pivot points need to be moved in the model, this is how it works:

The elements are tied to the pivot point in game.
Increasing the gap between the pivot point and the elements will increase the gap between the actual pivot point and the elements in game.

For example, if the pivot point is moved 12 pixels east inside the model, the elements will appear 12 pixels west in game.
This is because, as the pivot point cannot be moved in game, the elements will move instead.
The elements render relative to the pivot point.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Item Textures

 Custom Item Textures

[image: _images/icon3.webp]

The amount changes the texture.

Custom Item Textures (CIT) can change items to different textures based on their properties, such as enchantments, names, and NBT rules.

[image: _images/settings3.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

Global properties

File location

/assets/minecraft/optifine/cit.properties

This file contains global properties for CIT and should be in the optifine/cit folder of the resource pack.

For individual item textures, see the Properties section.

Note

average and layered methods with cap=1 are equivalent and will both show only the first enchantment on an item.

Danger

Not implemented: method, cap, fade.

method

Values: average, layered, or cycle

Optional

Default: average

Specifies how to apply multiple effects to the same item.
Depending on the method chosen, multiple effects can be rendered with different intensities from 0 (invisible) to 1 (fully visible).

	average: Weighted average by enchantment level: intensity = enchantment_level / sum(enchantment_levels).

	layered: Similar to average, but max() is used instead of sum(): intensity = enchantment_level / max(enchantment_levels).

	cycle: Cycle through each effect in turn. The duration of each effect can be set via the duration property.
The [group] value (if present) allows multiple sets of effects to be cycled through independently.

cap

Values: Positive integer

Optional

Specifies how many layers can be rendered for average and layered methods.
The top-most layers have priority over the bottom-most layers, as determined by the layer value of each effect.

fade

Values: Positive float

Optional

Default: 0.5

The speed at which one effect will transition into another in a cycle.
This does not affect the duration of the actual effect when displayed. For that, use the effect's duration property.

useGlint

Values: Boolean

Optional

Default: true

Whether to use the default glint.png enchantment texture or not.

	If true: glint.png is used if no other custom enchantment effect is available.

	If false: the default glint.png enchantment stops rendering completely.

This is important for items that have no specific enchantment but have an enchantment effect, such as potions and golden apples.

Danger

This has been broken since 1.12. See GH-6480 [https://github.com/sp614x/optifine/issues/6480].

Properties

File location

/assets/minecraft/optifine/cit/**/*.properties

For each item to override with a custom texture, create a .properties file in the /assets/minecraft/optifine/cit/ folder of the resource pack.
Properties files can be organized into subfolders of any depth, as long as everything is within the top-level optifine/cit folder.

Each properties file specifies:

	A list of matching items.

	A replacement texture or model.

	An optional set of rules specifying when this CIT will apply to the item.

Note

For best compatibility with tag matching, use escape sequences for characters outside the ASCII range: \u0107 instead of ć.

These properties apply to all CIT types.

type

Values: item, enchantment, armor, or elytra

Optional

Default: item

Type of texture replacement.

 Colormaps

 Colormaps

[image: _images/vanilla_foliage.webp]

The vanilla foliage.png.

File location

/assets/minecraft/optifine/colormap/**/*

Colormaps modify a texture's tint based on its biome and height.

A custom colormap can consist of either a PNG file, a .properties file, or both, depending on what is intended.
OptiFine greatly expands this functionality to other blocks and to ambient sky and fog colors.

This can be used to give each biome its own color tone.

Custom colormaps can be applied to any one block or to a set of blocks.
They can also be applied to ambient fog, sky, and underwater colors.

Formats

"vanilla" format

See also

See the wiki page on tint [https://minecraft.wiki/w/Tint] for more details.

Warning

This format is difficult to manipulate and is not recommended.

The format used by vanilla Minecraft is a 256px by 256px PNG, with the axes representing temperature and humidity, respectively.
Each biome has fixed base temperature and humidity values corresponding to a single pixel in the colormap.
As the y coordinate increases, the position in the colormap slowly moves toward the ↘ lower-right.

[image: _images/vanilla.webp]

An approximation of how Vanilla colormaps work.

A forum post [http://www.minecraftforum.net/forums/mapping-and-modding/resource-packs/resource-pack-discussion/1256322-new-biome?comment=124] by khanador illustrates how this works.

Note

The vanilla format is used for all custom colormaps as well, unless this behavior is overridden!

Biome colormaps use a triangular gradient by default.
However, only the colors in the lower-left half of the image are used, even though the upper-right side of foliage.png is colored.

[image: _images/vanilla_foliage.webp]

The Vanilla foliage.png file.
The upper-right side of foliage.png is colored is entirely unused.

Furthermore, a select few pixels are considered when the colormap is read by the game and are determined by the code below.

The adjusted temperature and adjusted rainfall values are used when determining the biome color to select from the colormap.
Treating the bottom-right corner of the colormap as Temperature = 0.0 and Rainfall = 0.0,
the adjusted temperature increases to 1.0 along the X-axis, and the adjusted rainfall increases to 1.0 along the Y-axis.
The values used to retrieve the colors are computed as follows:

new_temperature = clamp(temperature, 0.0, 1.0)
new_rainfall = clamp(rainfall, 0.0, 1.0) * new_temperature

"grid" format

See also

The MCPatcher source [https://bitbucket.org/prupe/mcpatcher/wiki/Biome_Palettes_(Grid)]

File location

/assets/minecraft/optifine/colormap/<ANY NAME>.png

An alternative format that offers finer control over each biome.

This format is similar to Vanilla's 256by by 256px format,
but the x coordinate represents the biome ID number [https://minecraft.wiki/w/Biome/ID],
and the y coordinate represents the height.

This allows complete separation between biomes and gives full control from minimum to maximum build height.

Each column in the colormap represents a single biome.

[image: _images/biome_grid_template.webp]

Please note that the above image is "flipped" vertically:

	The bottom of the world (y=0) is at the top of the image.

	The normal maximum build height (y=255) is at the bottom.

	Sea level is y=64.

Forward compatibility

Unused columns in the map represent unassigned biome IDs that may be used by either future Minecraft versions or mods.
Color schemes can be created for particular modded biomes if the IDs that they use are known.

If the IDs aren't known,
it is best to at least pick a neutral-looking gradient for unused columns so that new biomes will have a reasonable default appearance,
even if the pack isn't updated.

Backward compatibility

The vanilla grass.png and foliage.png maps in /assets/minecraft/textures/colormap are always in the vanilla format,
regardless of any properties file setting.

This preserves compatibility for non-OptiFine users.

To use the grid format with grass or leaves, a custom colormap must be present in /assets/minecraft/optifine/colormap/blocks and be applied to the appropriate block(s).
For OptiFine users, the custom colormap overrides the vanilla one; for non-OptiFine users, only the vanilla one will be used.

Resolution

While colormaps in this format are generally 256px by 256px, there is no strict requirement as there is with the vanilla format.

Minecraft 1.7 introduced rare variants of many biomes. For example, "Birch Forest M" (ID 155) is the rare version of "Birch Forest" (ID 27).

Conveniently, the rare is always common + 128. This fact can be utilized if all rare biomes should use the same color schemes as the corresponding non-rare ones.

Simply make the colormap 128 pixels wide instead of 256, and OptiFine will "wrap" it in the x direction when assigning columns to biomes.
Similarly, a 1 pixel wide colormap gives the same height-based color gradient across all biomes.

In the y direction, if more than 256 pixels are provided, OptiFine will use them if the server's build height is higher than 256, as is the case with 1.17 onward.
Similarly, if the colormap is shorter than 256 pixels, it will simply "top out" at that height, giving all blocks above that the same color as the top-most pixel of the map.

In particular, a height of 64 pixels allows for variation underground and a fixed color above sea level.

A height of 192 pixels combined with a property of yOffset=64 gives just the opposite: variation above ground and a fixed color below.
A height of 1 pixel allows for variation across biomes but not by height.

"fixed" format

OptiFine offers a simple "fixed" colormap format.

This format does not require an image; it is simply a single color applied to all blocks. regardless of location.
Its primary purpose is to override certain hardcoded block colors, like sugar cane.

Properties

File location

/assets/minecraft/optifine/colormap/*.properties

Note

The format property does not affect the vanilla "grass.png" and "foliage.png" files in /assets/minecraft/textures/colormap; those are always interpreted in the vanilla format in order to preserve compatibility for non-OptiFine users.

If the format is not fixed, the location of this file should sit in the same folder as the colormap image it will apply to.
It should have the same base name as the texture.

format

Values: String: grid, vanilla, or fixed

Optional

Default: vanilla

The format to use for this colormap.
If not specified, the vanilla format is used.
Has exceptions; see NOTE above.

blocks

Values: List of blocks

Optional

List of blocks to apply this colormap to.
For colormaps applied to terrain (as opposed to fog, sky, and underwater), this is a list of blocks and optional property values to apply the map to.
If this property is not specified, the block name is taken from the filename: cobblestone.properties ↔ blocks=minecraft:cobblestone

Example: blocks=stone minecraft:sand minecraft:lever:face=wall:facing=east,west.
See Blocks, items for more information.

source

Values: File path

Optional

File path to colormap texture.

Note

This is for vanilla and grid colormaps only.

If this property is omitted, the colormap defaults to a PNG with the same name and directory as the properties file itself: stone.properties <-> source=stone.png.

color

Values: String: hexadecimal RGB value without leading #

Optional

Default: ffffff

Differing behavior depending on format:

 Connected Textures

 Connected Textures

[image: _images/icon5.webp]

The textures appear to "connect".

File location

/assets/minecraft/optifine/ctm/**/*.properties

Connected Textures (CTM) connects matching blocks together, making them appear unified.

For each block or terrain tile to override with connected or random textures, create a .properties file in the /assets/minecraft/optifine/ctm folder of the resource pack.
Properties files can be organized into subfolders of any depth.

[image: _images/settings4.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

Different types of connected texture methods are available with different requirements and restrictions.

General properties

These properties apply for all CTM methods.

Note

matchTiles and matchBlocks can be omitted if they can be inferred from the filename instead:

	~/ctm/xxx/<name>.properties assumes matchTiles=<name>

	~/ctm/xxx/block_<name>.properties assumes matchBlocks=<name> (unless either property is specified explicitly; defined keys override inferred filenames)

method

Values: ctm, ctm_compact, horizontal, vertical, horizontal+vertical, vertical+horizontal, top, random, repeat, fixed, overlay_ctm,
overlay_random, overlay_repeat, or overlay_fixed

Optional

Method to use when choosing a block's replacement texture:

	ctm: Standard 8-way method, 47 tiles.

	ctm_compact: Compact 8-way method, uses 5 tiles. Cannot be combined with any overlay method.

	horizontal: Connect to blocks on left and right only.

	vertical: Connect to blocks above and below only.

	horizontal+vertical: Connect horizontally, then connect vertically.

	vertical+horizontal: Connect vertically, then connect horizontally.

	top: Connect to block above only.

	random: Pick a tile at random.

	repeat: Repeat a fixed pattern over large areas.

	fixed: Use a single fixed tile, equivalent to random with only one tile.

	overlay: Overlay for block transitions, uses 17 tiles.

	overlay_ctm: Overlay variant of ctm method.

	overlay_random: Overlay variant of random method.

	overlay_repeat: Overlay variant of the repeat method.

	overlay_fixed: Overlay variant of fixed method.

Note

The overlay method can be combined with other methods if it comes before the other methods in the order alphabetically.

Warning

The ctm_compact method cannot be combined with any overlay method.

tiles

Values: List of tiles

Required

List of replacement tiles to use.
Each tile must be a separate image, just like terrain and item textures
Tiles can be specified in several ways:

	0 -> 0.png

	8-11 -> 8.png, 9.png, 10.png, 11.png

	name -> name.png

	name.png -> name.png

	full/path/name.png -> full/path/name.png

	<skip>: Skip this tile, continue with next CTM properties.

	<default>: Use the default texture for that block/tile.

In all cases except the last (<default>), the PNG file must be in the same directory as the properties file itself.

The formats can be mixed and matched: tiles=0-4 5 some/other/name.png.

Note

The overlay methods may use the special name <skip> for empty tiles to be skipped;
overlay methods cannot use the <default> special name.

matchTiles

Values: List of strings

Optional

List of tiles this method should apply to.

Multiple .properties file can refer to the same block/tile and they will be processed in alphabetical order by filename.
All tile-based entries are checked before block ID-based ones; the first match wins.

matchBlocks

Values: List of blocks + optional properties

Optional

List of blocks this method should apply to.

To refer to a tile from vanilla Minecraft, simply use its name in textures/block: matchBlocks=dirt
To refer to a tile from a mod, its name must be known: matchBlocks=botania:blazeblock

Tiles output by CTM rules can also be matched by another rule;
the tile name is simply the full path to the tile: matchBlocks=optifine/ctm/mygrass/1.png

Block format: (optional parts are in []) [namespace:]name[:property1=value1,value2...:property2=value1,value2...]
For example:

	Short name: oak_stairs

	Full name: minecraft:oak_stairs

	Full name + properties: minecraft:oak_stairs:facing=east,west:half=bottom

weight

Values: Integer

Optional

Default: 0

If multiple properties files match the same block, the highest weighted one is used.

In the event of a tie, the properties filenames are compared next.

connect

Values: block, tile, or state

Optional

Default: block for blocks, tile for tiles

The conditions under which two blocks should connect. For methods that connect to adjacent blocks, this rule specifies how the game should decide if two blocks should be connected:

	block: Connect if this block's name == neighbor block's name.

	tile: Connect if this block's tile texture == neighbor tile's texture.

	state: Connect if this block's full state (block + properties) == neighbor block's state.

faces

Values: List of strings

Optional

Limit CTM to certain faces of the block:

	bottom: Bottom face (negative Y).

	top: Top face (positive Y).

	north: North face (negative Z).

	south: South face (positive Z).

	east: East face (positive X).

	west: West face (negative X).

	sides: Shorthand for north south east west.

	all: All sides.

Important

This property is ignored on non-cube blocks like signs and fences.

biomes

Values: List of biomes [https://minecraft.wiki/w/Biome#Biome_IDs]

Optional

Biome restrictions.
Modded biomes also can be used.

heights

Values: List of integers or integer Range.

Optional

Height restriction, no limit.
Since 1.18, negative values may be specified for height. When used in a range they have to be put in parenthesis ().

See Numbers, ranges.

minHeight

Legacy

Legacy property for heights.

maxHeight

Legacy

Legacy property for heights.

ctm.<ctm_index>

Values: Tile index

Optional

Compact CTM tile replacement. Allows definition of replacement tile for a specific CTM case.

<ctm_index> is the index of the CTM case from the template (0..46),
Tile index is the index of the tile as defined in tiles, not the tile name.

With ctm_compact, more than 5 tiles can be defined and they can use the additional tiles as replacements.

Important

This rule is only for the ctm_compact method.

name

Values: List of block IDs

Optional

Only for blocks with have corresponding nameable tile entities.
Generally, this means containers that can be renamed.

For example: Beacon, Brewing Stand, Enchanting Table, Furnace, Dispenser, Dropper, Hopper, and Command Blocks.

See Custom GUIs for the syntax.

Method properties

ctm: standard 8-way

Note

Implies method=ctm.

[image: _images/ctm.webp]

Important

48th tile is unused.

tiles

Values: List of 47 tiles

Required

List of the 47 tiles to use when connecting.

innerSeams

Values: Boolean

Optional

Default: false

Whether to show seams on inner edges when connecting to adjacent blocks.

ctm_compact: compact 8-way

Note

Implies method=ctm_compact,

[image: _images/compact.webp]

tiles

Values: List of 5 tiles

Required

List of the 5 tiles to use when connecting.

innerSeams

Values: Boolean

Optional

Default: false

Whether to show seams on inner edges when connecting to adjacent blocks.

ctm.N

Values: Integer

Optional

Indexes of replacement tiles for specific CTM cases.
N is a tile index.

Important

This is generally only used for special cases where you want to override the default behavior.

horizontal: horizontal only

Note

Implies method=horizontal.

[image: _images/horizontal.webp]

tiles

Values: List of 4 tiles

Required

List of the 4 tiles to use when connecting.

vertical: vertical only

Note

Implies method=vertical.

[image: _images/vertical.webp]

tiles

Values: List of 4 tiles

Required

List of the 4 tiles to use when connecting.

top: top face only

Note

Implies method=top.

tiles

Values: String

Required

The single tile to use when connecting.

random: random connect

Note

Implies method=random.

tiles

Values: List of tiles

Required

List of the tiles to use when connecting. Can be infinitely long or short.

weights

Values: List of integers

Optional

List of weights to apply to the random choice.

For example, for tiles=1 2 3 4; weights=10 1 10 5, tile 1 has weight 10, 2 has 1, 3 has 10, and 4 has 5.
Weights do not have to total any value; in the above example, tiles 1 and 3 will each be used ~38% of the time.

Important

This rule must have the same number of elements as the tiles rule.

randomLoops

Values: Integer Range from 0 to 9

Optional

Default: 0

Repeats the random function by this amount to increase randomness.
Can be used to make different textures use different random patterns.

Warning

A high randomLoops value may decrease the chunk loading speed.

symmetry

Values: none, opposite, or all

Optional

Default: none

Desired level of symmetry for the faces of each block.

Applies to standard 6-sided blocks only (dirt, glass, not fences).

	none: All 6 faces are textured independently.

	opposite: 2-way symmetry; opposing faces have the same texture, but each pair can potentially have a different texture.

	all: All 6 faces have the same texture.

linked

Values: Boolean

Optional

Default: false

Whether to link textures between related blocks.

If true, OptiFine uses the same random number seed for all parts of a multi-block object.
For example, the top and bottom halves of tall grass.
This allows randomized textures that will remain consistent within each set of blocks.

If false, the two halves will be scrambled, chosen independently.
This property currently only applies to plants, double plants (rose bushes, peonys, etc.), and doors.

Important

For linked to work, multiple properties files with linked=true and the same number of replacement textures and same set of weights must be present.
For example, double_plant_top.properties:

method=random
tiles=grass_top1 grass_top2 grass_top3
weights=1 2 3

repeat: repeated

Note

Implies method=repeat.

width

Values: Integer

Required

The width of the repeating pattern.

height

Values: Integer

Required

The height of the repeating pattern.

tiles

Values: List of tiles

Required

A list of tiles.
The number of elements must equal width * height.

symmetry

Values: none, or opposite

Optional

Default: none

Desired level of symmetry for the faces of each block.

Applies to standard 6-sided blocks only (dirt, glass, not fences).

	none: All 6 faces are textured so that the pattern tiling looks the same from all sides

	opposite: 2-way symmetry; opposing faces have the same texture, which means that tiling on the south and east faces will be mirrored left-to-right when comapared to the north and west faces

fixed: one texture

Note

Implies method=fixed.

tiles

Values: String

Required

Single tile to use.

overlay: texture atop

Note

Implies method=overlay

[image: _images/overlay.webp]

Important

17th, 18th, 19th, and 20th tiles are unused.

tiles

Values: List of tiles

Required

List of replacement tiles to use.

May use the special name <skip> for empty tiles to be skipped;
cannot use the <default> special name.

connectTiles

Values: List of tiles

Optional

Connect only to blocks which are using the specified tiles.

Note

This rule only applies to overlay methods.

tintIndex

Values: Integer

Optional

Default: -1; disabled

Tint index, only for overlay method.
Tint index is for the tile's texture.

Use -1 to disable it.

tintBlock

Values: Block

Optional

The block used for the tile texture tinting.

Different blocks use different colors for the same tint index.

layer

Values: String of cutout_mipped, cutout, or translucent

Optional

Default: cutout_mipped

The layer on which the overlay texture should be rendered.

Values:

	cutout_mipped: Transparent textures with mipmaps [https://en.wikipedia.org/wiki/Mipmap].

	cutout: Transparent textures without mipmaps.

	translucent: Translucent textures with mipmaps.

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/cit.schema.json",
	"title": "Connected Textures",
	"description": "Connected Textures (CTM) connects matching blocks together, making them appear unified.",
	"type": "object",
	"properties": {
		"method": {
			"enum": [
				"ctm",
				"ctm_compact",
				"horizontal",
				"vertical",
				"horizontal+vertical",
				"vertical+horizontal",
				"top",
				"random",
				"repeat",
				"fixed",
				"overlay_ctm",
				"overlay_random",
				"overlay_repeat",
				"overlay_fixed"
],
			"description": "Method to use when choosing a block's replacement texture."
		},
		"tiles": {
			"type": "string",
			"description": "Space-separated string of replacment tiles to use."
		},
		"matchTiles": {
			"$ref": "common.schema.json#/$defs/item_id_list",
			"description": "Space-separated string of tiles this method should apply to."
		},
		"matchBlocks": {
			"$ref": "common.schema.json#/$defs/item_id_list",
			"description": "Space-separated string of blocks this method should apply to."
		},
		"weight": {
			"type": "integer",
			"default": 0,
			"description": "If multiple properties files match the same block, the highest weighted one is used."
		},
		"connect": {
			"enum": [
				"block",
				"tile",
				"state"
],
			"description": "The conditions under which two blocks should connect."
		},
		"connectTiles": {
			"$ref": "common.schema.json#/$defs/item_id_list",
			"description": "Connect only to blocks which are using the specified tiles."
		},
		"faces": {
			"type": "string",
			"pattern": "(bottom|top|north|south|east|west|sides|all) ?",
			"description": "Limit CTM to certain faces of the block."
		},
		"biomes": {
			"type": "string",
			"description": "Space-separated string of biome restrictions."
		},
		"heights": {
			"type": "string",
			"description": "Height restriction ranges."
		},
		"minHeight": {
			"type": "integer",
			"minimum": -65535,
			"deprecated": true,
			"description": "Legacy key for heights."
		},
		"maxHeight": {
			"type": "integer",
			"maximum": 65535,
			"deprecated": true,
			"description": "Legacy key for heights."
		},
		"tintIndex": {
			"type": "integer",
			"minimum": -1,
			"default": -1,
			"description": "Tint index, only for overlay method."
		},
		"tintBlock": {
			"$ref": "common.schema.json#/$defs/item_id",
			"description": "The block used for the tile texture tinting."
		},
		"layer": {
			"enum": [
				"cutout_mipped",
				"cutout",
				"translucent"
],
			"default": "cutout_mipped",
			"description": "The layer on which the overlay texture should be rendered."
		},
		"name": {
			"$ref": "common.schema.json#/$defs/item_id_list",
			"description": "Only for blocks with have corresponding nameable tile entities."
		}
	},
	"patternProperties": {
		"^ctm\\.\\d+$": {
			"type": [
				"string",
				"integer"
],
			"minimum": 0,
			"description": "Compact CTM tile replacement. Allows definition of replacement tile for a specific CTM case."
		}
	},
	"required": [
		"tiles"
],
	"additionalProperties": false,
	"allOf": [
		{
			"if": {
				"properties": {
					"connectTiles": {}
				}
			},
			"then": {
				"properties": {
					"method": {
						"const": "overlay"
					}
				}
			}
		},
		{
			"if": {
				"patternProperties": {
					"^ctm\\.\\d+$": {}
				}
			},
			"then": {
				"properties": {
					"method": {
						"const": "ctm_compact"
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"tintIndex": {}
				}
			},
			"then": {
				"properties": {
					"method": {
						"const": "overlay"
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"layer": {}
				}
			},
			"then": {
				"properties": {
					"method": {
						"const": "overlay"
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"method": {
						"const": "ctm"
					}
				}
			},
			"then": {
				"properties": {
					"innerSeams": {
						"type": "boolean",
						"default": false,
						"description": "Whether to show seams on inner edges when connecting to adjacent blocks."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"method": {
						"const": "ctm_compact"
					}
				}
			},
			"then": {
				"properties": {
					"innerSeams": {
						"type": "boolean",
						"default": false,
						"description": "Whether to show seams on inner edges when connecting to adjacent blocks."
					}
				},
				"patternProperties": {
					"^ctm\\.\\d+$": {
						"type": [
							"string",
							"integer"
],
						"minimum": 0,
						"description": "Indexes of replacement tiles for specific CTM cases."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"method": {
						"const": "random"
					}
				}
			},
			"then": {
				"properties": {
					"weights": {
						"type": "string",
						"description": "Space-separated string of weights to apply to the random choice."
					},
					"randomLoops": {
						"type": "integer",
						"minimum": 0,
						"maximum": 9,
						"description": "Repeats the random function by this amount to increase randomness."
					},
					"symmetry": {
						"enum": [
							"none",
							"opposite",
							"all"
],
						"default": "none",
						"description": "Desired level of symmetry for the faces of each block."
					},
					"linked": {
						"type": "boolean",
						"default": false,
						"description": "Whether to link textures between related blocks."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"method": {
						"const": "repeat"
					}
				}
			},
			"then": {
				"properties": {
					"width": {
						"type": "integer",
						"minimum": 1,
						"maximum": 16384,
						"description": "The width of the repeating pattern."
					},
					"height": {
						"type": "integer",
						"minimum": 1,
						"maximum": 16384,
						"description": "The height of the repeating pattern."
					},
					"symmetry": {
						"enum": [
							"none",
							"opposite"
],
						"default": "none",
						"description": "Desired level of symmetry for the faces of each block."
					}
				},
				"required": [
					"width",
					"height"
]
			}
		}
]
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Animations

 Custom Animations

File location

/assets/minecraft/optifine/anim/**/*.properties

Custom Animations allows all textures to be animated, regardless of type and purpose.

Important

For block and item textures, including CTM and CIT replacements, continue using Mojang's mcmeta method instead.

In Minecraft 1.5, Mojang added the ability to animate any block or item texture (originally a feature provided by MCPatcher).
However, there is yet no way to animate other textures like mob skins or GUIs.
OptiFine fills the gap enabling any rectangular area of any non-block or item texture to be animated.

This includes even textures specific to other OptiFine features such as random mob skins or skyboxes.

To build an animation, first choose a texture and determine the X and Y coordinates, and width and height of the area to animate.
Create the animation as a vertical strip of frames.

The width should be the same as the width of the area to animate.
The height should be a multiple of the animation area height.

Multiple non-overlapping parts of the same texture can be animated by using the same to value with different from, x, y, w, and h values.
They can even have independent timing and frame order information.

Emissive animation is also possible, see Emissive Textures.

Properties

Note

duration, interpolate, skip, tile, duration are optional, rest are required

from

Values: String: File path

Required

Path to source texture of the animation to display.

to

Values: String: File path

Required

Path to destination texture to replace and animate.

x, y

Values: Positive integers

Required

Coordinates of top-left corner of the destination texture to animate to.
Normally, this is 0, 0.

w, h

Values: Positive integer

Required

Width and height of an individual animation frame.

duration

Values: Positive integer

Optional

Duration of each individual frame, in ticks.
For reference, there are 20 ticks in 1 second.

interpolate

Values: Boolean

Optional

Whether to interpolate [https://en.wikipedia.org/wiki/Interpolation_(computer_graphics)] between each animated frame.

 Custom Colors

 Custom Colors

[image: _images/icon6.webp]

Different colored potions.

File location

/assets/minecraft/optifine/color.properties

Custom Colors* can modify the hardcoded colors for various particles, fogs, and miscellanea.

Values only need to be provided for the properties that need to be changed.

[image: _images/settings5.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

The default Minecraft values for each property are given below for convenience.

Properties

Particles

	Key

	Meaning

	Default

	particle.water

	
Base water particle color (splashes, bubbles, drops).

Biome water color multiplier is applied to this value.

The value should match the color of the resource pack's base water texture.

If the base water texture is grey, in which coloring is via misc/watercolor#.png, this should be set to ffffff

	334cff

	particle.portal

	
Base portal particle color.

A random multiplier between 0.4 and 1.0 is applied to all three R, G, B values

	ff4ce5

Fogs, skies

	Key

	Meaning

	Default

	fog.nether

	Fog used in the Nether dimension

	330707

	fog.end

	Fog used in The End dimension

	181318

	sky.end

	Color of the sky in The End dimension

	282828

Lilypads

	Key

	Meaning

	Default

	lilypad

	Single color, used across all biomes

	208030

Potions

For potions with more than 1 effect,
the final color is the average of the applicable colors, weighted by the level of each potion effect.

Note

potion.water is a plain bottle of water

	Key

	Default

	potion.absorption

	2552a5

	potion.blindness

	1f1f23

	potion.confusion

	551d4a

	potion.damageBoost

	932423

	potion.digSlowDown

	4a4217

	potion.digSpeed

	d9c043

	potion.fireResistance

	e49a3a

	potion.harm

	430a09

	potion.heal

	f82423

	potion.healthBoost

	f87d23

	potion.hunger

	587653

	potion.invisibility

	7f8392

	potion.glowing

	94a061

	potion.jump

	786297

	potion.levitation

	ceffff

	potion.luck

	339900

	potion.moveSlowdown

	5a6c81

	potion.moveSpeed

	7cafc6

	potion.nightVision

	1f1fa1

	potion.poison

	4e9331

	potion.regeneration

	cd5cab

	potion.resistance

	99453a

	potion.saturation

	f82423

	potion.unluck

	c0a44d

	potion.waterBreathing

	2e5299

	potion.weakness

	484d48

	potion.wither

	352a27

	potion.water

	385dc6

Spawner egg colors

[image: _images/spawnegg_label.webp]

Red are the shell, blue are the spots.

	Key

	Meaning

	Default

	egg.shell.<entity>

	Change the color of the shell of the egg

	None

	egg.spots.<entity>

	Change the color of the spots on the egg

	None

<entity> controls what spawn egg the colors apply to
Colons must be escaped: egg.spots.minecraft\:creeper=000000", "None"

Map colors

Blocks

	Key

	Meaning

	Default

	map.air

	Void, unrendered blocks

	000000

	map.grass

	Grass block

	7fb238

	map.sand

	Yellow sand

	f7e9a3

	map.cloth

	Any wool

	c7c7c7

	map.tnt

	TNT block

	ff0000

	map.ice

	Ice, packed ice, blue ice

	a0a0ff

	map.iron

	Iron blocks

	a7a7a7

	map.foliage

	Grass, tall grass, flowers, ferns

	007c00

	map.clay

	Clay

	a4a8b8

	map.dirt

	Dirt, coarse dirt, rooted dirt

	976d4d

	map.stone

	Stone

	707070

	map.water

	Water source, water flowing

	4040ff

	map.wood

	Any planks

	8f7748

	map.quartz

	Any quartz block

	fffcf5

	map.gold

	Gold block

	faee4d

	map.diamond

	Diamond block

	5cdbd5

	map.lapis

	Lapis block

	4a80ff

	map.emerald

	Emerald block

	00d93a

	map.podzol

	Podzol block

	815631

	map.netherrack

	Netherrack block

	700200

	map.deepslate

	Deepslate blocks

	646464

	map.raw_iron

	Raw iron block

	d8af93

	map.glow_lichen

	Glow lichen

	7fa796

General colors

	Key

	Default

	map.white

	ffffff

	map.orange

	d87f33

	map.magenta

	b24cd8

	map.light_blue

	6699d8

	map.yellow

	e5e533

	map.lime

	7fcc19

	map.pink

	f27fa5

	map.gray

	4c4c4c

	map.light_gray

	999999

	map.cyan

	4c7f99

	map.purple

	7f3fb2

	map.blue

	334cb2

	map.brown

	664c33

	map.green

	667f33

	map.red

	993333

	map.black

	191919

Terracotta

	Key

	Default

	map.white_terracotta

	d1b1a1

	map.orange_terracotta

	9f5224

	map.magenta_terracotta

	95576c

	map.light_blue_terracotta

	706c8a

	map.yellow_terracotta

	ba8524

	map.lime_terracotta

	677535

	map.pink_terracotta

	a04d4e

	map.gray_terracotta

	392923

	map.light_gray_terracotta

	876b62

	map.cyan_terracotta

	575c5c

	map.purple_terracotta

	7a4958

	map.blue_terracotta

	4c3e5c

	map.brown_terracotta

	4c3223

	map.green_terracotta

	4c522a

	map.red_terracotta

	8e3c2e

	map.black_terracotta

	251610

Nether blocks

	Key

	Default

	map.crimson_nylium

	bd3031

	map.crimson_stem

	943f61

	map.crimson_hyphae

	5c191d

	map.warped_nylium

	167e86

	map.warped_stem

	3a8e8c

	map.warped_hyphae

	562c3e

	map.warped_wart_block

	14b485

Sheep coats

	Key

	Default

	sheep.white

	e6e6e6

	sheep.orange

	ba6015

	sheep.magenta

	953a8d

	sheep.light_blue

	2b86a3

	sheep.yellow

	bea22d

	sheep.lime

	609517

	sheep.pink

	b6687f

	sheep.gray

	353b3d

	sheep.light_gray

	757571

	sheep.cyan

	107575

	sheep.purple

	66258a

	sheep.blue

	2d337f

	sheep.brown

	623f25

	sheep.green

	465d10

	sheep.red

	84221c

	sheep.black

	151518

Collar colors

Used on wolf and cat collars.

	
[image: _images/wolf.webp]

The red collar on a tamed wolf.

	
[image: _images/cat.webp]

The red collar on a tamed cat.

	Key

	Default

	collar.white

	f9fffe

	collar.orange

	f9801d

	collar.magenta

	c74ebd

	collar.light_blue

	3ab3da

	collar.yellow

	fed83d

	collar.lime

	80c71f

	collar.pink

	f38baa

	collar.gray

	474f51

	collar.light_gray

	9d9d97

	collar.cyan

	169c9c

	collar.purple

	8932b8

	collar.blue

	3c44aa

	collar.brown

	835432

	collar.green

	5e7c16

	collar.red

	b02e26

	collar.black

	1d1d21

Dyes

Base color for banners, beacon beam, tropical fish, wolf and cat collars if unspecified.

	Key

	Default

	dye.white

	f9fffe

	dye.orange

	f9801d

	dye.magenta

	c74ebd

	dye.light_blue

	3ab3da

	dye.yellow

	fed83d

	dye.lime

	80c71f

	dye.pink

	f38baa

	dye.gray

	474f52

	dye.light_gray

	9d9d97

	dye.cyan

	169c9c

	dye.purple

	8932b8

	dye.blue

	3c44aa

	dye.brown

	835432

	dye.green

	5e7c16

	dye.red

	b02e26

	dye.black

	1d1d21

Text

Miscellaneous

	Key

	Meaning

	Default

	text.xpbar

	Experience bar number color

	80ff20

	text.boss

	“Boss Health” text color

	ff00ff

	text.sign

	Sign text color by default

	000000

Color codes

Note

Colors below text.code.15 are for text shadows, if enabled in options

	Key

	Default

	text.code.0

	000000

	text.code.1

	0000aa

	text.code.2

	00aa00

	text.code.3

	00aaaa

	text.code.4

	aa0000

	text.code.5

	aa00aa

	text.code.6

	ffaa00

	text.code.7

	aaaaaa

	text.code.8

	555555

	text.code.9

	5555ff

	text.code.10

	55ff55

	text.code.11

	55ffff

	text.code.12

	ff5555

	text.code.13

	ff55ff

	text.code.14

	ffff55

	text.code.15

	ffffff

	text.code.16

	000000

	text.code.17

	00002a

	text.code.18

	002a00

	text.code.19

	002a2a

	text.code.20

	2a0000

	text.code.21

	2a002a

	text.code.22

	2a2a00

	text.code.23

	2a2a2a

	text.code.24

	151515

	text.code.25

	15153f

	text.code.26

	153f15

	text.code.27

	153f3f

	text.code.28

	3f1515

	text.code.29

	3f153f

	text.code.30

	3f3f15

	text.code.31

	3f3f3f

Resource loading screen

Not to be confused with

 Custom Loading Screens

[image: _images/loading.webp]

Red is screen.loading.
Blue is screen.loading.outline.
Green is screen.loading.progress.
Purple is screen.loading.background.

	Key

	Meaning

	Default

	screen.loading

	Background color

	ffffff

	screen.loading.bar

	Loading bar background color

	ffffff

	screen.loading.outline

	Loading bar outline color

	000000

	screen.loading.progress

	Loading bar foreground color

	e22837

	screen.loading.blend

	Logo blending mode

	None

screen.loading

Default value

ffffff

Background color of the loading screen.

screen.loading.bar

Default value

ffffff

Loading bar background color. This is behind the progress bar.

screen.loading.outline

Default value

000000

Loading bar outline color. This is the outline around the bar's background.

screen.loading.progress

Default value

e22837

Loading bar foreground color. This is the progress bar itself.

screen.loading.blend

Default value

None for all 4 fields

Logo blending mode. Defined as 4 values split by a space.

Important

It is unclear what specifically these values do. If you know, please make an Issue on the repository [https://gitlab.com/whoatemybutter/optifinedocs/-/issues/new]!

In order, the fields are src, dst, dstA, and dstB.

All of these fields may be any of:

	ZERO

	ONE

	SRC_COLOR

	ONE_MINUS_SRC_COLOR

	DST_COLOR

	ONE_MINUS_DST_COLOR

	SRC_ALPHA

	ONE_MINUS_SRC_ALPHA

	DST_ALPHA

	ONE_MINUS_DST_ALPHA

	SRC_ALPHA_SATURATE

Other

clouds

Overrides cloud type.
Must be a single value of either:

	fast

	fancy

	none

xporb.time

Default value

628

Experience orb animation duration, in milliseconds.

yVariance

If set, this property adds a random integer to the Y coordinate before sampling from the Colormaps, giving flat areas a more varied appearance.

Important

This only applies to the grid colormap format.

palette.format

Default value

vanilla

What format to use as a default for all colormaps, if not specified.
Must be``grid``, vanilla, or fixed.

Aliases

	map.snow: map.white

	map.adobe: map.orange

	map.silver: map.light_gray

	map.lightBlue: map.light_blue

	collar.silver: collar.light_gray

	collar.lightBlue: collar.light_blue

	dye.silver: dye.light_gray

	dye.lightBlue: dye.light_blue

	sheep.silver: sheep.light_gray

	sheep.lightBlue: sheep.light_blue

Miscellaneous colormaps

Custom Colors allows the tints of different blocks, entities, and enviornments to be changed with a texture.

Because of their location, you can find this list at Colormaps and at Lightmaps.

Important

Although Custom Colors manages both of the files in the two separated lists, they are kept separate because of their file location.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom GUIs

 Custom GUIs

[image: _images/icon7.webp]

Custom Shulker box GUI

File location

/assets/minecraft/optifine/gui/container/*.properties

Custom GUIs can define a texture for each GUI, and apply them based on different criteria, such as the entity, biome, height, and more.

For each container GUI texture to override, create a .properties file in the /assets/minecraft/optifine/gui/container folder of the resource pack.
Properties files can be organized into subfolders of any depth, as long as everything is within the top-level /assets/minecraft/optifine/gui/container folder.

[image: _images/settings6.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

Important

Different container types have different requirements and restrictions.

General properties

container

Values: anvil, beacon, brewing_stand, chest, crafting, dispenser, enchantment, furnace, hopper, horse, villager, shulker_box, creative, or inventory

Required

Default: None

Type of container GUI to apply to.

	creative refers to the creative inventory with the tabs.

	inventory refers to the normal survival inventory, with the player in a window.

texture, texture.PATH

Values: String: File path

Required

Default: None

The replacing texture for the GUI.

The texture property replaces the default GUI texture.
The texture.PATH property can be used to replace any GUI texture; PATH is relative to /assets/minecraft/textures/gui.

Important

The creative inventory GUI does not have a default texture, so it must use PATH textures.

Example for creative inventory:

/assets/minecraft/optifine/gui/container/creative/creative_desert.properties

container=creative
biomes=desert
texture.container/creative_inventory/tab_inventory=tab_inventory_desert
texture.container/creative_inventory/tabs=tabs_desert
texture.container/creative_inventory/tab_items=tab_items_desert
texture.container/creative_inventory/tab_item_search=tab_item_search_desert

Important

At least one texture or texture.PATH is required.

name

Values: String

Optional

Default: None

Custom entity or block entity name.

This will apply the replacement GUI only when the container matches this rule.

See Regular expressions for details.

biomes

Values: List of biomes [https://minecraft.gamepedia.com/Biome#Biome_IDs]

Optional

Default: None

Biomes where this replacement applies.

Biomes added by mods can also be used with the same syntax.

heights

Values: Integer, or range of integers

Optional

Default: None

Heights where this replacement applies.

Since 1.18, negative values may be specified for height.
When used in a range they must be put in parenthesis: (-3)-64.

Specific properties

These additional properties do not need any separate files.
They are just properties that apply only when container equals their required value.

Chests

Note

Implies container=chest.

large

Values: Boolean

Optional

Whether to use the replacement GUI on a large (double) chest.

trapped

Values: Boolean

Optional

Whether to use the replacement GUI on a trapped chest.

christmas

Values: Boolean

Optional

Whether to use the replacement GUI on any Christmas chest [https://minecraft.wiki/w/Chest#Christmas_chest].
Christmas chests appear from December 24 to 26 of any year.

ender

Values: Boolean

Optional

Whether to use the replacement GUI on an Ender Chest [https://minecraft.wiki/w/Ender_Chest].

Beacons

Note

Implies container=beacon.

levels

Values: Integer, or range of integers.

Optional

Default: None

What levels of beacon power to apply the replacement to; how many bases of blocks.

[image: _images/beacon_pyramid.webp]

The levels from left to right: 4, 3, 2, 1.

Villagers

Note

Implies container=villager.

professions

Values: none, armorer, butcher, cartographer, cleric, farmer, fisherman, fletcher, leatherworker, librarian, mason, nitwit, shepherd, toolsmith, or weaponsmith, along with an optional level experience format

Optional

List of villager professions with an optional level specifier.

Entry format: <profession>[:level1,level2,...]

Examples:

	Professions farmer (all levels) or librarian (levels 1,3,4): professions=farmer librarian:1,3-4

	Professions fisher, shepard, nitwit: professions=fisherman shepherd nitwit

Horse

Note

Implies container=horse.

variants

Values: horse, donkey, mule, llama

Optional

What specific horse type to apply replacement to.

Dispenser, dropper

Note

Implies container=dispenser. Dropper applies as well.

variants

Values: dispenser or dropper

Optional

Default: dispenser

What specific block to apply the replacement GUI to.

Llama, shulker box

Note

Implies container=shulker_box or container=horse.

Important

Despite the container being horse, this property will apply to Llamas instead.

colors

Values: white, orange, magenta, light_blue, yellow, lime, pink, gray, light_gray, cyan, purple, blue, brown, green, red, black

Optional

Shulker box color or llama carpet color to apply the replacement texture to.

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/custom_guis.schema.json",
	"title": "Custom GUIs",
	"description": "Custom GUIs can define a texture for each GUI, and apply them based on different criteria, such as the entity, biome, height, and more.",
	"type": "object",
	"properties": {
		"container": {
			"enum": [
				"anvil",
				"beacon",
				"brewing_stand",
				"chest",
				"crafting",
				"dispenser",
				"enchantment",
				"furnace",
				"hopper",
				"horse",
				"villager",
				"shulker_box",
				"creative",
				"inventory"
],
			"description": "Type of container GUI to apply to."
		},
		"texture": {
			"$ref": "common.schema.json#/$defs/resource",
			"description": "The replacing texture for the GUI."
		},
		"name": {
			"type": "string",
			"description": "Custom entity or block entity name."
		},
		"biomes": {
			"type": "string",
			"description": "Space-separated string of biomes where this replacement applies."
		},
		"heights": {
			"type": [
				"string",
				"integer"
],
			"description": "Heights where this replacement applies."
		}
	},
	"patternProperties": {
		"^texture\\.[/0-9a-z._]+$": {
			"$ref": "common.schema.json#/$defs/resource",
			"description": "The replacing texture for the GUI."
		}
	},
	"allOf": [
		{
			"if": {
				"properties": {
					"container": {
						"const": "chest"
					}
				}
			},
			"then": {
				"properties": {
					"large": {
						"type": "boolean",
						"description": "Whether to use the replacement GUI on a large chest."
					},
					"trapped": {
						"type": "boolean",
						"description": "Whether to use the replacement GUI on a trapped chest."
					},
					"christmas": {
						"type": "boolean",
						"description": "Whether to use the replacement GUI on any Christmas chest."
					},
					"ender": {
						"type": "boolean",
						"description": "Whether to use the replacement GUI on an Ender Chest."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"container": {
						"const": "beacon"
					}
				}
			},
			"then": {
				"properties": {
					"levels": {
						"type": [
							"string",
							"integer"
],
						"minimum": 1,
						"maximum": 4,
						"description": "What levels of beacon power to apply the replacement to; how many bases of blocks."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"container": {
						"const": "villager"
					}
				}
			},
			"then": {
				"properties": {
					"professions": {
						"type": "string",
						"pattern": "(none|armorer|butcher|cartographer|cleric|farmer|fisherman|fletcher|leatherworker|librarian|mason|nitwit|shepherd|toolsmith|weaponsmith)(:\\d+(-\\d+)?(,\\d+(-\\d+)?)*)",
						"description": "Space-separated string of villager professions with an optional level specifier."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"container": {
						"const": "horse"
					}
				}
			},
			"then": {
				"properties": {
					"variants": {
						"enum": [
							"horse",
							"donkey",
							"mule",
							"llama"
],
						"description": "What specific horse type to apply replacement to."
					},
					"colors": {
						"enum": [
							"white",
							"orange",
							"magenta",
							"light_blue",
							"yellow",
							"lime",
							"pink",
							"gray",
							"light_gray",
							"cyan",
							"purple",
							"blue",
							"brown",
							"green",
							"red",
							"black"
],
						"description": "Llama carpet color to apply the replacement texture to."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"container": {
						"const": "dispenser"
					}
				}
			},
			"then": {
				"properties": {
					"variants": {
						"enum": [
							"dispenser",
							"dropper"
],
						"default": "dispenser",
						"description": "What specific block to apply the replacement GUI to."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"container": {
						"const": "shulker_box"
					}
				}
			},
			"then": {
				"properties": {
					"colors": {
						"enum": [
							"white",
							"orange",
							"magenta",
							"light_blue",
							"yellow",
							"lime",
							"pink",
							"gray",
							"light_gray",
							"cyan",
							"purple",
							"blue",
							"brown",
							"green",
							"red",
							"black"
],
						"description": "Shulker box color to apply the replacement texture to."
					}
				}
			}
		},
		{
			"if": {
				"properties": {
					"colors": {}
				}
			},
			"then": {
				"properties": {
					"variants": {
						"enum": [
							"shulker_box",
							"llama"
]
					}
				},
				"required": [
					"colors"
]
			}
		}
],
	"required": [
		"container"
],
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Lightmaps

 Custom Lightmaps

[image: _images/icon8.webp]

Daylight lightmap.

File location

/assets/minecraft/optifine/lightmap/**/*.png

Custom Lightmaps can change the color of light from light sources and under different conditions.

Vanilla lighting

Every block has two light values from 0 to 15 assigned to it, one for sky brightness and one for torch brightness.

A block in direct sunlight has a sky value of 15.
A block in the shade directly adjacent to it has a value of 14 and so on.

Blocks deep underground far from any block that can see the sky have sky brightness 0. Similarly for torches.
A torch block has light value 14 (15 for glowstone) and the light value drops by 1 each block away from it, in a diamond shape.

[image: _images/torch_light.webp]

A visualization of the light levels a torch gives off.

To generate the lighting actually seen in game, Minecraft uses a 16px x 16px lightmap image.
The image's axes correspond to the 16 light levels of each type. If a block has torch brightness x and sky brightness y, then the point (x, y) is used for its lightmap.

Important

The lightmap is not in any of the game's assets.

Two variables affect the lightmap: the time of day, and the torch flicker.
Minecraft implements dusk/dawn transitions and torch flicker by making the entire lightmap darker or lighter as a whole. rather than by adjusting the sky/torch brightness values.

Other lightmaps

To create custom lighting, a lightmap palette needs to be created for each world:

	Nether: /assets/minecraft/optifine/lightmap/world-1.png

	Overworld: /assets/minecraft/optifine/lightmap/world0.png

	The End: /assets/minecraft/optifine/lightmap/world1.png

For the overworld, optional rain and thunder palettes may also be specified:

	Overworld rain: /assets/minecraft/optifine/lightmap/world0_rain.png

	Overworld thunder: /assets/minecraft/optifine/lightmap/world0_thunder.png

The rain and thunder palettes are only active when the main Overworld palette is defined.

Each palette can be any width, but must be 32 or 64 pixels tall.
If it's 64, the bottom half is used for night vision; see Night vision.

Of the 32 rows of pixels, the top 16 represent sunlight and the bottom 16 represent torchlight.

Two columns (16 pixels from the top half, and 16 pixels from the bottom half) are chosen to form the axes of the final 16px x 16px lightmap used.

[image: _images/template.webp]

Blue: Night.
Orange: Dusk/dawn.
Cyan: Day.
Yellow: Lightning.

In the top half, the left-hand side represents night and the right-hand side represents day, with the dusk/dawn transitions in between.
The very far right of the palette represents lightning flashes.

Again, there is no specified width for the palette, but more width means more room for detail in the transitions.

Torches work similarly, but in this case the x coordinate is simply a random value simulating torch flicker.
The variation along the x dimension will determine how noticable torch flicker is.
To have completely steady torchlight with no flicker, make all pixels along each row the same color.

Lightmaps work the same in all three worlds, but since there is no night or day in Nether and The End, the "time of day" value is constant.
For these worlds, simply give rows 0 through 15 the same color all the way across.

Night vision

In Vanilla, the night vision effect is computed by scaling the RGB values by 1.0 / max(R,G,B).
For example, (0.2, 0.3, 0.6) would brighten to (0.333, 0.5, 1.0) after dividing by 0.6.

This behaviour can be overridden with a custom lightmap by making the height 64 pixels instead of 32.
Provide four palettes instead of two: normal sun, normal torch, night vision sun, and night vision torch.

Lightmap generation works exactly the same way but uses rows 32-47 and 48-63 instead.

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Loading Screens

 Custom Loading Screens

[image: _images/icon9.webp]

The dimension switching screen.

Custom Loading Screens define the screen when changing worlds, loading a world, starting the game, or reloading datapacks.

File location

/assets/minecraft/optifine/gui/loading/loading.properties

Custom loading screen backgrounds per dimension can be defined as: /assets/minecraft/optifine/gui/loading/background<DIM>.png

Where <DIM> is the dimension ID:

	1: End

	0: Overworld

	-1: Nether

Note

Mods may extend this ID list.

[image: _images/mojang.webp]

The Vanilla loading screen since 1.16.

Properties

Note

The properties scaleMode, scale, and center can also be configured per dimension:

dim<dim>.scaleMode=<fixed|full|stretch>
dim<dim>.scale=2
dim<dim>.center=<true|false>

scaleMode

Values: fixed, full, or stretch

Optional

Default: fixed

Custom scale mode for the background texture:

	fixed: use fixed scale, pixel for pixel (default).

	full: fullscreen, keep aspect ratio.

	stretch: fullscreen, stretch picture.

scale

Values: Integer

Optional

Default: scaleMode=fixed: 2, scaleMode=full: 1

Custom scale for the background texture.

For scale mode fixed, it defines the pixel scale to use.
This is combined with the curent GUI scale.

For scale modes full and stretch, it defines how many tiled textures should fit on the screen.

center

Values: Boolean

Optional

Default: false

Defines if the background texture should be centered on the screen.

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/custom_loading_screens.schema.json",
	"title": "Custom Loading Screens",
	"description": "Custom Loading Screens define the screen when changing worlds, loading a world, starting the game, or reloading datapacks.",
	"type": "object",
	"properties": {},
	"additionalProperties": false,
	"patternProperties": {
		"^(dim-?[0-9]+\\.)?scaleMode$": {
			"enum": [
				"fixed",
				"full",
				"stretch"
],
			"description": "Custom scale mode for the background texture.",
			"default": "fixed"
		},
		"^(dim-?[0-9]+\\.)?scale$": {
			"type": "integer",
			"minimum": 0,
			"description": "Custom scale for the background texture.",
			"default": 1
		},
		"^(dim-?[0-9]+\\.)?center$": {
			"type": "boolean",
			"description": "Defines if the background texture should be centered on the screen.",
			"default": false
		}
	}
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Panoramas

 Custom Panoramas

[image: _images/icon10.webp]

The 1.17 main menu.

File location

/assets/minecraft/optifine/gui/background.properties

Custom Panoramas control the behaviour of the main menu panorama.

Danger

This feature has been broken since 1.13 See GH-2052 [https://github.com/sp614x/optifine/issues/2052].

Alternative panorama folders

Note

This is optional.

Alternative panorama folders can include a background.properties file to define custom properties for each panorama.

For example:

/assets/minecraft/optifine/gui/background1
 /panorama_0.png
 /panorama_1.png
 /panorama_2.png
 /panorama_3.png
 /panorama_4.png
 /panorama_5.png

Properties

weight

Values: Integer

Optional

Default: 1

Weights of selections, in descending order; higher weights will be selected more often.

Blurs

The main menu background uses 3 types of blur prior to 1.12.

Warning

Higher blur levels may decrease the main menu FPS.

Danger

This feature does not work past 1.12.

blur1

Values: Integer, 1 through 64

Optional

Default: 1

blur2

Values: Integer, 1 through 3

Optional

Default: 1

blur3

Values: Integer, 1 through 3

Optional

Default: 1

Overlay colors

Note

When the top and bottom colors are both 0, that overlay is disabled.

If enabled, two gradient overlays can be drawn on top of the background panorama.

The color format is ARGB (alpha [transparency], red, green, blue), in hexadecimal [https://en.wikipedia.org/wiki/Hexadecimal].

To read it, convert each interval of two values to decimal from hexadecimal (AABBCCDD == 0xAA, 0xBB, 0xCC, 0xDD == 170, 187, 204, 221).

overlay1.top

Values: AARRGGBB

Optional

Default: 80FFFFFF

First overlay, top gradient color.

overlay1.bottom

Values: AARRGGBB

Optional

Default: 00FFFFFF

First overlay, bottom gradient color.

overlay2.top

Values: AARRGGBB

Optional

Default: 00000000

Second overlay, top gradient color.

overlay2.bottom

Values: AARRGGBB

Optional

Default: 80000000

Second overlay, bottom gradient color.

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/custom_panoramas.schema.json",
	"title": "Custom Panoramas",
	"description": "Custom Panoramas control the behaviour of the main menu panorama.",
	"type": "object",
	"properties": {
		"weight": {
			"type": "integer",
			"minimum": 0,
			"default": 1,
			"description": "Weights of selections, in descending order; higher weights will be selected more often."
		},
		"blur1": {
			"type": "integer",
			"minimum": 1,
			"maximum": 64,
			"default": 1
		},
		"blur2": {
			"type": "integer",
			"minimum": 1,
			"maximum": 3,
			"default": 1
		},
		"blur3": {
			"type": "integer",
			"minimum": 1,
			"maximum": 3,
			"default": 1
		},
		"overlay1.top": {
			"type": "string",
			"pattern": "^[0-9a-fA-F]{8}$",
			"default": "80FFFFFF",
			"description": "First overlay, top gradient color."
		},
		"overlay1.bottom": {
			"type": "string",
			"pattern": "^[0-9a-fA-F]{8}$",
			"default": "00FFFFFF",
			"description": "First overlay, bottom gradient color."
		},
		"overlay2.top": {
			"type": "string",
			"pattern": "^[0-9a-fA-F]{8}$",
			"default": "00FFFFFF",
			"description": "Second overlay, top gradient color."
		},
		"overlay2.bottom": {
			"type": "string",
			"pattern": "^[0-9a-fA-F]{8}$",
			"default": "00000000",
			"description": "Second overlay, bottom gradient color."
		}
	},
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Custom Sky

 Custom Sky

[image: _images/icon11.webp]

A space skybox with a moon.

File location

/assets/minecraft/optifine/sky/world*/*.properties
/assets/minecraft/optifine/sky/**/*.png

Custom Sky changes the skybox texture and can apply different sets of skies depending on the time, biome, heights, weather, and more.

Place the file in:

	~/sky/world0/ for Overworld.

	~/sky/world1/ for End. (since version G9)

	~/sky/world-1/ for Nether.

in the resource pack.

Each file represents one layer of the sky.
OptiFine will load them in order by their number, applying one on top of the previous.

Additionally, two special properties files are applied to the sun and moon if present.
This is mainly intended to allow overriding the blend method used by the sun and moon:

	~/sky/world0/sun.properties: replaces sun.png.

	~/sky/world0/moon_phases.properties: replaces moon_phases.png.

	
[image: _images/sun.webp]

The Vanilla sun.png.

	
[image: _images/moon_phases.webp]

The Vanilla moon_phases.png.

Instead of a full skybox, the source texture should match the layout of sun.png or moon_phases.png.

Important

The "world0" in the path refers to the overworld.
If there were other worlds with skies (the Nether and End do not use the standard sky rendering# methods), their files would be in ~/sky/world<world number>.

[image: _images/skybox.webp]

A simple template for a skybox, with directions labelled.
Image is from this merge request [https://github.com/sp614x/optifine/pull/3687/commits/6fde1c5424216e8b80e921072c00a09b2282bf08]

[image: _images/star_sky.webp]

An example of how a skybox might look.

Properties

Note

speed does not affect the fading in and out; this always occurs on a 24-hour cycle.

startFadeIn

Values: String: hh:mm 24-hour format

Optional

Fade in/out times.
All times are in hh:mm 24-hour format. See Time format.

If no times are specified, the layer is always rendered.

endFadeIn

Values: See above

Optional

Default: None

endFadeOut

Values: See above

Optional

Default: None

source

Values: String: File path

Optional

Default: skyN.png in same directory, N is properties' file name N.

Path to source texture.

Multiple properties files can reuse the same source.

blend

Values: add, subtract, multiply, dodge, burn, screen, replace, overlay, or alpha

Optional

Default: add

The blending method [https://en.wikipedia.org/wiki/Blend_modes] between fading of layers.

Here, 'previous layer' can refer to the default sky or to the previous custom sky defined by sky<N-1>.properties.
Supported blending methods are:

	add: Add this sky bitmap to the previous layer. In case of overflow, white is displayed.

	subtract: Subtracts this sky bitmap to the previous layer. In case of negative values, black is displayed.

	multiply: Multiply the previous RGBA values by the RGBA values in the current bitmap.

	dodge: Lightens the sky bitmap.

	burn: Darkens the sky bitmap.

	screen: Inverts both layers, multiplies them, and then inverts that result.

	replace: Replace the previous layer entirely with the current bitmap. There is no gradual fading with this method; if brightness computed from the fade times is >0, the full pixel value is used.

	overlay: RGB value > 0.5 brightens the image, < 0.5 darkens.

	alpha: Weighted average by alpha value.

rotate

Values: Boolean

Optional

Default: true

Whether or not the source texture should rotate with the time of day.

speed

Values: Positive float

Optional

Default: 1.0

Rotation speed as a multiple of the default of one 360-degree cycle per game day.

A value of 0.5 rotates every two days.

Info

Irrational values can be useful to make clouds appear in different positions each day.

axis

Values: List of three floats

Optional

Default: 0.0 0.0 1.0

The axis of rotation of the skybox.
If a player is looking in the given direction, the skybox will appear to be rotating clockwise around the line of sight.

Default rotation is along the southern axis (rising in the east and setting in the west).

For reference, the vectors corresponding to the six cardinal directions are below.
However, the rotation axis can be any vector except 0.0 0.0 0.0:

down = 0 -1 0
up = 0 1 0
north = 0 0 -1
south = 0 0 1
west = -1 0 0
east = 1 0 0

days

Values: List of integers or integer Range

Optional

The days for which the layer is to be rendered.

Days are numbered from 0 to daysLoop-1, for example: days=0 2-4 6.

daysLoop

Values: Positive integer

Optional

Default: 8

Number of days in a loop, see above.

weather

Values: clear, rain, or thunder

Optional

Default: clear

Under what weather for which the layer is to be rendered.
Several values can be specified separated by spaces, for example weather=clear rain thunder.

biomes

Values: List of biome IDs [https://minecraft.wiki/w/Biome#Biome_IDs]

Optional

Default: None

Limit the sky to only certain biomes.

heights

Values: List of integers or integer Range

Optional

Limit the sky to only certain heights.

Since 1.18, negative values may be specified for height. When used in a range they have to be put in parenthesis (): (-3)-64.

transition

Values: Integer

Optional

Default: 1

Transition time (in seconds) for the layer brightness.
It is used to smooth sharp transitions, for example between different biomes.

Time format

All times are in hh:mm 24-hour format.

For reference,

	Sunrise

	6:00

	/time set 0

	Noon

	12:00

	/time set 6000

	Sunset

	18:00

	/time set 12000

	Midnight

	0:00

	/time set 18000

The fade times control the brightness when blending.

	between startFadeIn and endFadeIn: 0 up to 1

	between endFadeIn and startFadeOut: always 1

	between startFadeOut and endFadeOut: 1 down to 0

	between endFadeOut and startFadeIn: always 0

Important

startFadeOut does not need to be specified; its value is uniquely determined by the other three.

Blender model

Note

This Blender model was contributed by usernamegeri [https://www.curseforge.com/members/usernamegeri/].

You can generate the vector coordinates that are required for the axis of rotation of the skybox by using a pre-made tool for Blender.
It can be found here.

 Dynamic Lights

 Dynamic Lights

[image: _images/icon12.webp]

A dropped torch item.

File location

/assets/minecraft/optifine/dynamic_lights.properties
/assets/<MOD>/optifine/dynamic_lights.properties

Dynamic Lights allows hand-held and dropped light-emitting items, such as torches, to illuminate the blocks around them in the world.

[image: _images/settings7.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

[image: _images/cave.webp]

An example of dynamic lighting; the held-item torch illuminates the blocks around the player, and the dropped glowstone item also does the same.

This configuration file allows mods to define dynamic light levels for entities and items.

Properties

entities

Values: String: entity:light_level

Optional

Entity light levels.
The entity name is automatically expanded with the mod's ID, if applicable.

The light level should be between 0 and 15.
For example: entities=basalz:15 blitz:7.

Important

This does not work for minecraft: entities.

items

Values: String: item:light_level

Optional

Item light levels.
The item name is automatically expanded with the mod's ID, if applicable.

The light level should be between 0 and 15.
For example: items=florb:15 morb:7.

Important

This does not work for minecraft: items.

JSON schema

Note

Although this page is .properties based, it can be mapped to JSON.

{
	"$schema": "http://json-schema.org/draft/2020-12/schema",
	"$id": "https://gitlab.com/whoatemybutter/optifinedocs/-/blob/master/schemas/dynamic_lights.schema.json",
	"title": "Dynamic Lights",
	"description": "Dynamic Lights allows hand-held and dropped light-emitting items such as torches to illuminate the blocks around them in the world.",
	"type": "object",
	"properties": {
		"entities": {
			"type": "string",
			"pattern": "(.*?:\\d{1,2}) ?",
			"description": "Entity light levels."
		},
		"items": {
			"type": "string",
			"pattern": "(.*?:\\d{1,2}) ?",
			"description": "Item light levels."
		}
	},
	"additionalProperties": false
}

 Assumes the latest OptiFine version.

 Updated to commit dc7b4aca [https://github.com/sp614x/optifine/commit/dc7b4aca0630ce34cf9bc9a77396809aedef90fe].

 Open source at https://gitlab.com/whoatemybutter/optifinedocs.

 Emissive Textures

 Emissive Textures

[image: _images/icon14.webp]

Emissive diamond ore.

File location

/assets/minecraft/optifine/emissive.properties

Emissive Textures add a second texture on top of a block which will render with no darkness and will be unaffected by lightmaps.

Important

They do not change the actual lighting around them. This does not affect actual lighting, just the pixel's brightness.

It is possible to add overlays to block textures, which will always rendered with full brightness.
This can simulate light emitting parts of the textures.

[image: _images/ores.webp]

An example of emissive ores in a dark water cave.

[image: _images/settings8.webp]

Button and tooltip for the option, found in Video Settings ‣ Quality.

The emissive overlays have the same name as the base texture + custom suffix.
For example:

	bedrock.png: base texture

	bedrock_e.png: emissive overlay

The emissive overlays are rendered in the same block layer as the base texture, except overlays for textures from layer SOLID, which are rendered as CUTOUT_MIPPED.
The overlays can also be used for items, mobs and block entities.

Properties

suffix.emissive

Values: String

Optional

Default: _e

The suffix a file must have to be registered as emissive.

Armor trims

Emissive armor trim [https://minecraft.wiki/w/Smithing_Template] textures are defined by adding one of the following material suffixes to the trim base name:

	amethyst

	copper

	diamond

	diamond_darker

	emerald

	gold

	gold_darker

	iron

	iron_darker

	lapis

	netherite

	netherite_darker

	quartz

	redstone

For example (if suffix.emissive is _e):

coast_amethyst_e.png, host_iron_darker_e.png, dune_leggings_netherite_e.png

Translucency

Textures that have the ability to be translucent (such as slime blocks) may have their brightness changed by an emissive texture.

For example, if a pixel's transparency is 50% (0x7F in bytes), that emissive pixel will be half as 'bright'.

Limitations

Emissives cannot be applied to:

	End Crystal

	End Crystal Beam

	Ender Dragon

	Pantings

	Clouds

	End Sky

	Rain

	Snowflakes (weather effect)

	Particles

	Trident

Tutorials

By Ewan Howell:

[image: _images/ewan.webp]
 [https://ewanhowell.com/guides/emissive-textures]

 HD Fonts

 HD Fonts

[image: _images/icon15.webp]

The default font texture snippet.

File location

/assets/minecraft/optifine/font/**/*.{png,properties}

Danger

This feature is obsolete. Do not use it. Minecraft's font system has fixed the issues HD Fonts was created to resolve.

Characters outside the ASCII range are not supported.

HD Fonts can define custom widths for ASCII characters.

OptiFine first looks for fonts in the /assets/minecraft/optifine/font folder.
This allows having a custom font that works in vanilla and a higher-resolution font that requires OptiFine to display properly.

To allow for more control over the widths of individual charac